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A major challenge in studying coupled groundwater and surface-water interactions arises from the con-
siderable difference in the response time scales of groundwater and surface-water systems affected by
external forcings. Although coupled models representing the interaction of groundwater and surface-
water systems have been studied for over a century, most have focused on groundwater quantity or
quality issues rather than response time. In this study, we present an analytical framework, based on
the concept of mean action time (MAT), to estimate the time scale required for groundwater systems
to respond to changes in surface-water conditions. MAT can be used to estimate the transient response
time scale by analyzing the governing mathematical model. This framework does not require any form of
transient solution (either numerical or analytical) to the governing equation, yet it provides a closed form
mathematical relationship for the response time as a function of the aquifer geometry, boundary condi-
tions, and flow parameters. Our analysis indicates that aquifer systems have three fundamental time
scales: (i) a time scale that depends on the intrinsic properties of the aquifer, (ii) a time scale that depends
on the intrinsic properties of the boundary condition, and (iii) a time scale that depends on the properties
of the entire system. We discuss two practical scenarios where MAT estimates provide useful insights and
we test the MAT predictions using new laboratory-scale experimental data sets.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction difference in the response times of these systems (Rodriguez
Understanding the interactions between groundwater and sur-
face-water systems is an important aspect of water resources man-
agement. Using mathematical models to study these interactions
can help us better address associated water quality and quantity
issues. In the published literature, groundwater and surface-water
interactions have been studied using both physical and mathemat-
ical approaches (Clement et al., 1994; Winter, 1995; Chang and
Clement, 2012; Simpson et al., 2003a) that involve invoking a
range modeling simplifications and assumptions, such as assuming
that groundwater flow takes place in a homogeneous porous med-
ium, assuming that streams are fully penetrating, and assuming
rainfall conditions are uniform. To provide further insight into
real-world practical problems, some of these simplifications and
assumptions need to be relaxed.

A major challenge in studying groundwater and surface-water
interactions arises from the fact that there is a considerable
et al., 2006; Hantush, 2005). For example, after a rainfall event, sur-
face-water levels can respond on the order of hours to days,
whereas groundwater levels might respond on the order of weeks
to months. Current approaches for studying these problems can be
classified into four categories, each of which involve certain limita-
tions: (i) field investigations, which can be expensive and time con-
suming; (ii) laboratory experiments, which can be limited by
scaling issues; (iii) numerical modeling, which, due to the orders
of magnitude differences in the response times, might lead to
numerical instabilities or other convergence issues (Hantush,
2005); and (iv) analytical modeling, which may be efficient but
can have serious limitations in considering practical scenarios
involving variations in stream stage, recharge, or discharge bound-
ary conditions (Barlow and Moench, 1998). Several previous
researchers have presented analytical solutions focussing on aqui-
fer response times (Rowe, 1960; Pinder et al., 1969; Singh and
Sagar, 1977; Lockington, 1997; Mishra and Jain, 1999; Ojha,
2000; Swamee and Singh, 2003; Srivastava, 2003).

Understanding groundwater response times near a groundwater
surface-water boundary will help us make informed decisions
about the use of different types of mathematical models. For
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example, if the water stage in the surface-water body is perturbed,
we expect the local groundwater system in contact with the stream
to undergo a transient response and eventually reach a new steady-
state. Tools that can predict the time needed for such transient
responses to relax to a steady-state condition could help to make
informed decisions about using appropriate mathematical models.
For example, immediately after changing the surface-water eleva-
tion, we would need to apply a transient mathematical model to
predict the groundwater response; whereas, after a sufficiently long
period of time, we could describe the system using a simpler steady-
state model (Simpson et al., 2003b).

In the groundwater literature, response time (or lag time) is
defined as the time scale required for a groundwater system to
change from some initial condition to a new steady-state
(Sophocleous, 2012). In the heat and mass transfer literature this
time scale is known as the critical time (Hickson et al., 2009a,b,
2011). Simpson et al. (2013) summarized several previous
attempts to estimate the groundwater response time into three
categories: (i) numerical computation, (ii) laboratory-scale experi-
mentation, and (iii) simple mathematical definitions or approxi-
mations. All three categories involve making subjective
definitions of the response time by tracking transient responses
and choosing an arbitrary tolerance � and claiming that the
response time is the time taken for the transient response to decay
below this tolerance (Chang et al., 2011; Landman and
McGuinness, 2000; Watson et al., 2010; Hickson et al., 2011; Lu
and Werner, 2013). There are several limitations with this
approach. The most obvious limitation is that the response time
depends on a subjectively defined tolerance, �. Secondly, this
approach does not lead to a general mathematical expression to
describe how the response time would vary with problem geome-
try, changes in boundary conditions or aquifer parameters. Finally,
this approach requires an analytical or a numerical solution to the
governing transient equation. To deal with these limitations,
Simpson et al. (2013) demonstrated the use of a novel concept,
mean action time (MAT), for estimating aquifer response times.

The concept of MAT was originally proposed by McNabb and
Wake (1991) to describe the response times of heat transfer pro-
cesses. MAT provides an objective definition for quantifying
response time scales of different processes (McNabb, 1993). MAT
analysis leads to an expression relating the response time to the
various model parameters. Simpson et al. (2013) used MAT to char-
acterize the response time for a groundwater flow problem that
was driven by areal recharge processes, but did not consider any
groundwater and surface-water interactions. The objective of this
study is to extend the work of Simpson et al. (2013) and present
a mathematical model which describes transient groundwater flow
processes near a groundwater and surface-water boundary with
time-dependent boundary conditions. We adapt existing MAT the-
ory to deal with time-dependent boundary conditions and present
expressions for MAT which describe spatial variations in response
times for both linear and non-linear boundary forcing conditions.
These theoretical developments are then tested using data sets
obtained from laboratory experiments.
Fig. 1. Schematic of the physical model showing initial (dotted), transient (dashed)
and steady (solid) conditions. Changes in water head in the right and left
boundaries are defined by functions of BRðtÞ and BLðtÞ, respectively. At steady-
state, the left and right boundary conditions reach the levels h1ð0Þ and h1ðLÞ,
respectively.
2. Mathematical development

We consider a one-dimensional, unconfined, Dupuit–Forchhei-
mer model of saturated groundwater flow through a homogeneous
porous medium (Bear, 1979), which can be written as,

Sy
@h
@t
¼ K

@

@x
h
@h
@x

� �
; ð1Þ

where hðx; tÞ (L) is the groundwater head at position x; t (T) is time,
Sy (–) is the specific yield and K (L/T) is the saturated hydraulic
conductivity. When variations in the saturated thickness are small
compared to the average saturated thickness, we can linearize the
governing equation by introducing an average saturated thickness,
�h, to yield (Bear, 1979),

Sy
@h
@t
¼ K�h

@2h
@x2 ; ð2Þ

which can be re-written as the linear diffusion equation,

@h
@t
¼ D

@2h
@x2 ; ð3Þ

where D ¼ K�h=Sy ðL2=TÞ is the aquifer diffusivity. In this work, we
will use Eq. (3) to model a groundwater system which changes from
an initial condition, hðx;0Þ ¼ h0ðxÞ, to some steady-state,
limt!1hðx; tÞ ¼ h1ðxÞ. We will consider two different classes of
boundary conditions for Eq. (3): Case 1, in which both the left
ðx ¼ 0Þ and right ðx ¼ LÞ boundary conditions vary as functions of
time, and Case 2, in which one boundary condition is fixed and
the other one is allowed to vary with time.

2.1. Case 1: two time varying boundary conditions

We first consider the case where the surface-water variations at
both the left x ¼ 0ð Þ and right x ¼ Lð Þ boundaries vary with time,

BLðtÞ ¼ hð0; tÞ; ð4Þ
BRðtÞ ¼ hðL; tÞ: ð5Þ

We assume that, after a sufficient amount of time, both BLðtÞ
and BRðtÞ approach some steady condition,

lim
t!1

BLðtÞ ¼ h1ð0Þ; ð6Þ

lim
t!1

BRðtÞ ¼ h1ðLÞ; ð7Þ

for which the steady solution of Eq. (3) is,

h1ðxÞ ¼
h1ðLÞ � h1ð0Þ

L

� �
xþ h1ð0Þ: ð8Þ

A schematic of these initial, transient and steady-state condi-
tions are shown in Fig. 1.

The purpose of this study is to present an objective framework
to estimate the time scale required for the system to effectively
relax to steady-state conditions. To begin our analysis we first con-
sider the following two mathematical quantities (Ellery et al.,
2012a,b; Simpson et al., 2013),

Fðt; xÞ ¼ 1� hðx; tÞ � h1ðxÞ
h0ðxÞ � h1ðxÞ

� �
; t P 0; ð9Þ

f ðt; xÞ ¼ dFðt; xÞ
dt

¼ � @

@t
hðx; tÞ � h1ðxÞ
h0ðxÞ � h1ðxÞ

� �
; t P 0; ð10Þ
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where hðx; tÞ is the solution of Eq. (3), h0ðxÞ is the initial groundwa-
ter level, and h1ðxÞ is the steady-state level reached after a suffi-
ciently long period of time and we require that h0ðxÞ– h1ðxÞ,
ensuring that a transition takes place. Theoretically, the transient
response will require infinite amount of time to reach steady-state.
This implies that at all spatial locations, Fðt; xÞ changes from F ¼ 0 at
t ¼ 0 to F ! 1� as t !1. We can interpret Fðt; xÞ as a cumulative
distribution function (CDF) and f ðt; xÞ as a probability density func-
tion (PDF) (Ellery et al., 2012a,b; Simpson et al., 2013).

The MAT, TðxÞ, is the mean or the first moment of f ðt; xÞ, which
can be written as (Simpson et al., 2013),

TðxÞ ¼
Z 1

0
tf ðt; xÞdt: ð11Þ

To solve for TðxÞ, we apply integration by parts to Eq. (11) and
make use of the fact that hðx; tÞ � h1ðxÞ decays to zero exponen-
tially fast as t !1 (Haberman, 2004; Ellery et al., 2012a,b) to give,

TðxÞgðxÞ ¼
Z 1

0
h1ðxÞ � hðx; tÞdt; ð12Þ

where we define gðxÞ ¼ h1ðxÞ � h0ðxÞ. Differentiating Eq. (12) twice
with respect to x and combining the result with Eq. (3) yields,

d2½TðxÞgðxÞ�
dx2 ¼ � gðxÞ

D
: ð13Þ

Expanding Eq. (13) by applying the product rule gives,

d2TðxÞ
dx2 þ dTðxÞ

dx
2

gðxÞ
dgðxÞ

dx

� �
þ TðxÞ 1

gðxÞ
d2gðxÞ

dx2

" #
¼ � 1

D
: ð14Þ

which is a differential equation that governs the MAT for any
change from h0ðxÞ to h1ðxÞ, provided that Fðt; xÞ monotonically
increases from F ¼ 0 at t ¼ 0 to F ¼ 1� as t !1.

To solve Eq. (14), we must specify boundary conditions at x ¼ 0
and x ¼ L. The appropriate boundary conditions can be found by
evaluating Eq. (11) at x ¼ 0 and x ¼ L, recalling that the time vari-
ation in head at these locations is given by BLðtÞ and BRðtÞ, respec-
tively. We apply integration by parts, assuming that BLðtÞ and BRðtÞ
approach h1ð0Þ and h1ðLÞ, respectively, faster than t�1 decays to
zero as t !1, to give,

A ¼ 1
a

Z 1

0
ðh1ð0Þ � BLðtÞÞdt; where a ¼ h1ð0Þ � h0ð0Þ; ð15Þ

B ¼ 1
b

Z 1

0
ðh1ðLÞ � BRðtÞÞdt; where b ¼ h1ðLÞ � h0ðLÞ: ð16Þ

The constants A and B represent the mean time scales of the
boundary conditions. With these two constants we may solve Eq.
(14) to give an expression for the effective time scale of the system,

TðxÞ ¼ xðL� xÞ
6D|fflfflfflffl{zfflfflfflffl}

Intrinsic time scale of theaquifer

þ AaðL� xÞ þ Bbx
aðL� xÞ þ bx|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Intrinsic time scale of theboundary conditions

þ xLðL� xÞðaþ bÞ
6D½aðL� xÞ þ bx� :|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Mixed time scale of the system

ð17Þ

The first term on the right of Eq. (17) is independent of the
details of the boundary conditions, and so we interpret it as an
intrinsic time scale of the aquifer. The second term on the right of
Eq. (17) is independent of D, and depends on the details of the
boundary conditions. Therefore, we interpret this term as an intrin-
sic time scale of the boundary conditions. We note that the intrinsic
time scale of the boundary conditions can also be interpreted as
the weighted average of A and B; ðAwa þ BwbÞ=ðwa þwbÞ, with
linear weight functions wa ¼ aðL� xÞ=L and wb ¼ bx=L. This inter-
pretation implies the influence of the boundary conditions on the
time scale of the process at any point within the system depends
on the distances from the boundaries and also on the magnitude
of the changes imposed at the boundaries. For example, the time
scale at a point close to the left hand boundary, x ¼ 0, will be dom-
inated by the influence of the time scale of BLðtÞ and relatively
unaffected by the influence of the time scale of BRðtÞ, which is as
we might expect intuitively. However, intuition alone cannot pro-
vide quantitative insight into the impact of the boundary condi-
tions time scales at intermediate locations where the impact of
both boundary conditions plays a role. Finally, the third term on
the right of Eq. (17) depends on properties of the entire system
including both D, the magnitudes of head changes at the bound-
aries, but is independent of A and B, which are the mean time
scales of the boundary conditions. Therefore we consider this third
term as the mixed time scale of the system.

To provide additional information about the response time we
also consider the second moment of f ðt; xÞ, known as the variance
of action time (VAT), VðxÞ, and quantifies the spread about the MAT
(Ellery et al., 2012b, 2013). VAT is defined as,

VðxÞ ¼
Z 1

0
ðt � TðxÞÞ2f ðt; xÞdt: ð18Þ

Using integration by parts and noting that hðx; tÞ � h1ðxÞ decays
to zero exponentially fast as t !1, Eq. (18) can be written as,

wðxÞ ¼ 2
Z 1

0
tðh1ðxÞ � hðx; tÞÞdt; ð19Þ

where have defined wðxÞ ¼ gðxÞ½VðxÞ þ TðxÞ2�. Differentiating Eq. (19)
twice with respect to x and combining the result with Eq. (3) gives,

d2wðxÞ
dx2 ¼ �2TðxÞgðxÞ

D
: ð20Þ

To solve Eq. (20), we require two boundary conditions, which
are given by,

wð0Þ ¼ aðC þ A2Þ; ð21Þ
wðLÞ ¼ bðEþ B2Þ; ð22Þ

where C and E are the VAT at x ¼ 0 and x ¼ L, respectively. These
constants are defined using Eq. (18), and can be written as,

C ¼ 1
a

Z 1

0

dBLðtÞ
dt
ðt � AÞ2 dt; ð23Þ

E ¼ 1
b

Z 1

0

dBRðtÞ
dt

ðt � BÞ2 dt: ð24Þ

We solve Eq. (20) for wðxÞ, recalling that
VðxÞ ¼ wðxÞ=gðxÞ � TðxÞ2 and that hðx; tÞ � h1ðxÞ decays to zero
exponentially fast as t !1, which gives us,

VðxÞ ¼ 1
180D2ðaðL� xÞ þ bxÞ

ðcþ dþ gÞ � h; ð25Þ

where,

c¼3x5ðb�aÞþ15x4aLþ180aLD2ðCþA2Þ;
d¼10x3ð�bL2�6bBDþ6DAa�2aL2Þ�180x2aLAD;

g¼ x 180D2ðbE�aCþbB2�aA2Þþ60L2DðbBþ2AaÞþL4ð7bþ8aÞ
� �

;

h¼ x3ðb�aÞþ3x2aL�xðbL2þ6bBD�6DAaþ2aL2Þ�6aLAD
6Dðxb�xaþaLÞ

 !2

:

ð26Þ

VAT is a measure of the spread of the PDF about the mean (Ellery
et al., 2013). A small VAT implies that the spread about the mean
is small, and that the MAT is a sufficient estimate of the time
required for the system to effectively reach steady-state (Simpson



Fig. 2. Experimental aquifer set up used in this study.
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et al., 2013; Ellery et al., 2013). Alternatively, a large VAT indicates
that the PDF has a large spread about the mean and a better esti-
mate of the response time is TðxÞ þ

ffiffiffiffiffiffiffiffiffiffi
VðxÞ

p
(Simpson et al., 2013;

Ellery et al., 2013). This framework gives an explicit estimate for
the response time scale required for a groundwater system to
respond to a relatively general set of boundary conditions. The
method objectively describes the dependence of the time scale on
various aquifer parameters (K; Sy;

�h; BLðtÞ; BRðtÞ and L) and does
not require any numerical or analytical transient solution of the
governing equation.

Our MAT framework involves certain limitations which should
be made explicit. The first limitation is that the boundary condi-
tions must vary monotonically with time otherwise our definition
of Fðt; xÞ cannot be interpreted as a CDF. The second limitation is
that BLðtÞ and BRðtÞ must asymptote to the corresponding steady
values faster than t�1 decays to zero as t !1. We also require that
BLðtÞ and BRðtÞ both increase or decrease, or that one of the bound-
ary conditions must remain fixed with time. If one boundary con-
dition decreases and the other increases, there will be some points
in the domain at which the head distribution does not vary mono-
tonically and Fðt; xÞ cannot be interpreted as a CDF.

2.2. Case 2: one fixed boundary condition and one time varying
boundary condition

Here we consider a fixed boundary condition at x ¼ 0 and a
time-varying boundary condition at x ¼ L. We consider the water
level variation at x ¼ L to be given by BRðtÞ ¼ hðL; tÞ, which eventu-
ally asymptotes to some steady value, h1ðLÞ. As in Case 1, the dif-
ferential equation governing the MAT is Eq. (14), which, in this
case, simplifies to,

d2TðxÞ
dx2 þ 2

x
dTðxÞ

dx
¼ � 1

D
: ð27Þ

Two boundary conditions are required to solve Eq. (27). The
boundary condition at x ¼ L is the same as in Case 1, and given
by Eq. (16). To determine the boundary condition at x ¼ 0, we mul-
tiply both sides of Eq. (27) by x, which gives,

x
d2TðxÞ

dx2 þ 2
dTðxÞ

dx
¼ � x

D
: ð28Þ

Evaluating Eq. (28) at x ¼ 0 gives a Neumann boundary condi-
tion, dT=dx ¼ 0 at x ¼ 0. With these boundary conditions the solu-
tion of Eq. (27) is,

TðxÞ ¼ L2 � x2

6D
þ B: ð29Þ

To find the VAT we have wð0Þ ¼ 0 and wðLÞ ¼ bðB2 þ EÞ as bound-
ary conditions for Eq. (20). Recalling that VðxÞ ¼ wðxÞ=gðxÞ � TðxÞ2,
the VAT is given by,

VðxÞ ¼ L4 � x4

90D2 þ E; ð30Þ

where b; B and E are defined by Eqs. (16) and (24), respectively.

3. Laboratory experiments

We now examine the validity of the theoretical developments
presented in Section 2. To do this we consider two laboratory
experiments performed in a rectangular soil tank, using methods
described previously (Abarca and Clement, 2009; Simpson et al.,
2013; Chang and Clement, 2012). An image of the physical tank
is shown in Fig. 2. The tank has three distinct chambers. The central
porous media chamber (50 cm � 28 cm � 2.2 cm) was packed
under wet conditions with a uniform fine sand. The hydraulic
conductivity and specific yield of the porous medium are estimated
to be 330 m/day and 0.2, respectively. Two chambers at either
sides were separated using fine metal screens; these chambers
were used to set up the boundary conditions. Our coordinate sys-
tem is such that x ¼ 0 and x ¼ L denotes the left and right bound-
aries, respectively. Siphon-type tubes connected to electronic
manometers, shown in Fig. 2, were used to monitor head at two
internal points.

3.1. Experiment 1: Laboratory data for Case I

In this experiment, we consider a linearly varying boundary
condition at x ¼ 0 and a quadratically varying boundary condition
at x ¼ L. We model the right boundary condition as,

BRðtÞ ¼
h1ðLÞ � h0ðLÞð Þ t

N þ h0ðLÞ; 0 6 t 6 N;

h1ðLÞ; t > N;



ð31Þ

which is a linear change from h0ðLÞ to h1ðLÞ in N units of time. We
model the left boundary condition as,

BLðtÞ ¼
at2 þ bt þ c; 0 6 t 6 M;

h1ð0Þ; t > M:

(
ð32Þ

which is a nonlinear change from h0ð0Þ to h1ð0Þ in M units of time.
To represent a linear head variation, BRðtÞ, a pump was used to

evacuate water from the right chamber at a uniform rate. To repre-
sent a quadratically varying head condition, BLðtÞ, we allow water
to drain through an orifice in the left chamber. Using the Bernoulli
equation, we derive a quadratic relationship between falling head
and drainage time (Bansal, 2005). To specify BLðtÞ, experimental
data for water elevation changes occurring at the left boundary
were recorded. A quadratic expression, BLðtÞ ¼ at2 þ bt þ c, was fit-
ted to the data set. The initial state for the system was set to
h0ðxÞ ¼ 22:5 cm. The left boundary condition set to vary quadrati-
cally from h0ð0Þ ¼ 22:5 cm to h1ð0Þ ¼ 19:1 cm in 3 s, and the right
boundary condition to vary linearly from h0ðLÞ ¼ 22:5 cm to
h1ðLÞ ¼ 19:1 cm in 20 s. Table 1 summarizes the initial state,
steady-state, transition time and transition function of each
boundary used in this experiment. We measured the transient
head data at two intermediate points, x ¼ 20 cm and x ¼ 30 cm,
using digital manometers with 0.01 cm H2O resolution.

To quantitatively assess our framework, we calculated a; b; A
and B to give,

a ¼ h1ð0Þ � h0ð0Þ; ð33Þ
b ¼ h1ðLÞ � h0ðLÞ; ð34Þ

A ¼ �1
a

1
3

aM3 þ 1
2

bM2 þ ðc � h1ð0ÞÞM
� �

; ð35Þ

B ¼ N
2
: ð36Þ



Table 1
Experiment 1: Laboratory data for linearly varying right and quadratically varying left
boundary conditions.

Initial
head
(cm)

Steady
state
head
(cm)

Transition
time (s)

Transition function (cm)

Left boundary 22.5 19.1 3 BLðtÞ ¼ 0:37t2 � 2:22t þ 22:48
Right boundary 22.5 19.1 20 BRðtÞ ¼ �0:17t þ 22:50

Table 4
Experimental and theoretical values of MAT;

ffiffiffiffiffiffiffiffiffiffi
VAT
p

and MATþ
ffiffiffiffiffiffiffiffiffiffi
VAT
p

at x ¼ 20 cm
and x ¼ 30 cm for Experiment 2.

MAT
ffiffiffiffiffiffiffiffiffiffi
VAT
p

MATþ
ffiffiffiffiffiffiffiffiffiffi
VAT
p

x ¼ 20 x ¼ 30 x ¼ 20 x ¼ 30 x ¼ 20 x ¼ 30

Experimental values
(s)

19.2 18.3 8.2 8.3 27.4 26.6

Theoretical values (s) 19.4 17.7 9.9 9.7 29.3 27.4

Table 2
Experimental and theoretical values of MAT;

ffiffiffiffiffiffiffiffiffiffi
VAT
p

and MATþ
ffiffiffiffiffiffiffiffiffiffi
VAT
p

at x ¼ 20 cm
and x ¼ 30 cm for Experiment 1.

MAT
ffiffiffiffiffiffiffiffiffiffi
VAT
p

MATþ
ffiffiffiffiffiffiffiffiffiffi
VAT
p

x ¼ 20 x ¼ 30 x ¼ 20 x ¼ 30 x ¼ 20 x ¼ 30

Experimental values
(s)

12.3 14.3 9.1 8.7 21.4 23.0

Theoretical values (s) 11.2 14.3 10.4 8.6 21.6 22.9

Table 3
Experiment 2: Laboratory data for linearly varying right and fixed left boundary
conditions.

Initial
head
(cm)

Steady state
head (cm)

Transition
time (s)

Transition function (cm)

Left boundary 25.0 25.0 – BLðtÞ ¼ 22:50
Right boundary 25.0 23.0 25 BRðtÞ ¼ �0:08t þ 25:0
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Values of a; b; A and B for this experiment were calculated as
�3.4 cm, �3.4 cm, 1.1 s and 10.0 s, respectively. Using Eq. (17), we
predict that the MAT at x ¼ 20 cm and x ¼ 30 cm are
Tð20Þ ¼ 11:2 s and Tð30Þ ¼ 14:3 s, respectively. Similarly, after
using Eqs. (23 ) and (24) and evaluating the constants C ¼ 0:4 and
E ¼ 33:3, Eq. (25) gives

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Vð20Þ

p
¼ 10:4 s and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Vð30Þ

p
¼ 8:6 s,

respectively.
Predictions of MAT and

ffiffiffiffiffiffiffiffiffiffi
VAT
p

are summarized in Table 2. To
test these predictions, we analyzed our laboratory data from
Experiment 1 at x ¼ 20 cm and x ¼ 30 cm, as shown in Fig. 3. To
compute f ðt; xÞ, we used the data from Fig. 3(a) and (b). We apply
Eq. (10), using a central difference approximation to estimate
@h=@t (Chapra and Canale, 2009). Our estimates of t � f ðt; xÞ at
x ¼ 20 cm and x ¼ 30 cm are given in Fig. 3(c) and (d). We applied
Eqs. (11) and (18) to estimate TðxÞ and VðxÞ using the trapezoidal
rule (Chapra and Canale, 2009) to estimate the integrals. The
results are summarized in Table 2. Our results, reported in
Fig. 3(a) and (b), shows that the predicated effective time scale,
MATþ

ffiffiffiffiffiffiffiffiffiffi
VAT
p

, is a good approximation for the time required for
the system to effectively reach steady-state. Furthermore, the
Fig. 3. Laboratory data for Experiment 1 with initial condition h0ðxÞ ¼ 22:5 cm, the left bo
the right boundary condition varying linearly from h0ðLÞ ¼ 22:5 cm to h1ðLÞ ¼ 19:1 cm
x ¼ 30 cm, respectively. Results in (c) and (d) show t � f ðt; 20Þ and t � f ðt; 30Þ; where f ðt;
estimate of the MAT at position x. An improved estimate of the effective time scale req
results in Table 2 show that the predicted estimates of MAT and
VAT compare well with the values estimated directly from the
experimental data set.

3.2. Experiment 2: Laboratory data for Case II

In this experiment, a fixed boundary condition was maintained
in the left chamber, and a linearly varying boundary condition at
the right chamber. We used Eq. (31) to model the right boundary
condition. A pump was used to evacuate water from the right
chamber at a uniform rate. As shown in Table 3, in this experiment,
the following conditions were used: h0ðxÞ ¼ 25 cm, h1ðLÞ ¼ 23 cm
and N ¼ 25 s for the right boundary condition.

To quantitatively assess our MAT predictions, we first calcu-
lated the constant B defined by Eq. (16) as B ¼ N=2 ¼ 12:5 s. Using
Eq. (29) we found Tð20Þ ¼ 19:4 s and Tð30Þ ¼ 17:7 s, respectively.
Similarly, applying Eq. (24) we found E ¼ N2=12 ¼ 52:1 s2 andffiffiffiffiffiffiffiffiffiffiffiffiffi

Vð20Þ
p

¼ 9:9 s and
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Vð30Þ

p
¼ 9:7 s, respectively, using Eq. (30).

Our predictions of MAT and
ffiffiffiffiffiffiffiffiffiffi
VAT
p

values are summarized in
Table 4. The transient data collected from Experiment 2 are
undary condition varying quadratically from h0ð0Þ ¼ 22:5 to h0ðLÞ ¼ 19:1 in 3 s, and
in 20 s. Results in (a) and (b) show the observed head changes at x ¼ 20 cm and
xÞ is the probability density function at location x. Integrating t � f ðt; xÞ provides an

uired for the system to reach steady-state is: MATðxÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VATðxÞ

p
.



Fig. 4. Laboratory data for Experiment 2 with initial condition h0ðxÞ ¼ 25 cm, the left boundary condition fixed at BLðtÞ ¼ 25 cm, and the right boundary condition varying
linearly from h0ðLÞ ¼ 22:5 cm to h1ðLÞ ¼ 23 cm in 25 s. Results in (a) and (b) show the observed head changes at x ¼ 20 cm and x ¼ 30 cm, respectively. Results in (c) and (d)
show t � f ðt; 20Þ and t � f ðt; 30Þ; where f ðt; xÞ is the probability density function at location x. Integrating t � f ðt; xÞ provides an estimate of the MAT at position x. An improved
estimate of the effective time scale required for the system to reach steady state is: MATðxÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VATðxÞ

p
.
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reported in Fig. 4. Similar to Experiment 1, MAT;
ffiffiffiffiffiffiffiffiffiffi
VAT
p

and
MATþ

ffiffiffiffiffiffiffiffiffiffi
VAT
p

at x ¼ 20 cm and x ¼ 30 cm were calculated and
the results were compared against theoretical predictions. As
shown in Table 4, the theoretical predictions are in good agree-
ment with experimental results. Results in Fig. 4(a) and (b) illus-
trate that the predicted time scale required for the system to
effectively reach steady-state, MATþ

ffiffiffiffiffiffiffiffiffiffi
VAT
p

, is consistent with
our experimental observations.

4. Summary and conclusions

The focus of this study is to present a mathematical framework
which can predict the response time scales of groundwater flow
near a groundwater surface-water interface. To achieve this we
applied the theory of MAT (McNabb and Wake, 1991) to estimate
the time scale required for flow in a one-dimensional aquifer to
respond to various types of surface-water boundary perturbations.
We tested the proposed framework using two data sets collected
from a laboratory-scale experiment. Results show that the experi-
mental data are in good agreement with model predictions. A key
limitation of previous approaches for estimating the response time
scales is that they gave no simple framework for studying the sen-
sitivity of the time scale to various system parameters. Alterna-
tively, out MAT framework provides a relatively straightforward
mathematical relationship between the response time scale and
various system parameters.

The limitations of our framework are that the boundary condi-
tions must vary monotonically and that they must approach some
steady value faster than t�1 decays to zero as t !1. Furthermore,
we also require that both boundary conditions must either
increase or decrease, or that one of the boundary conditions
remains fixed. In practice, these limitations are not overly restric-
tive and a wide range of transient groundwater problems can be
analyzed using the proposed framework. We also acknowledge
that for all systems considered in this work we always considered
an initial condition, h0ðxÞ, that was spatially constant, independent
of position. We note that the same mathematical procedure used
to find MAT and VAT also applies to other conditions where the ini-
tial condition is genuinely spatially variable and these mathemat-
ical details can be found in our previous work (Ellery et al., 2012).
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Appendix A. Notation (SI units)

The following notation is used in this paper:

a; b; c, quadratic coefficients; (m/s2), (m/s), (m)
A ¼ 1

a
R1

0 ðh1ð0Þ � BLðtÞÞdt; (s)

B ¼ 1
b

R1
0 ðh1ðLÞ � BRðtÞÞdt; (s)

C ¼ 1
a
R1

0
dBLðtÞ

dt ðt � AÞ2 dt; (s2)
D, aquifer diffusivity; (m2/s)

E ¼ 1
b

R1
0

dBRðtÞ
dt ðt � BÞ2 dt; (s2)

Fðt; xÞ, cumulative distribution function; (–)
f ðt; xÞ, probability distribution function; (1/s)
gðxÞ ¼ h1ðxÞ � h0ðxÞ; (m)
hðx; tÞ, groundwater head at point x and time t; (m)
h0ðxÞ, initial groundwater head; (m)
h0, horizontal initial condition in laboratory experiments; (m)
h1ðxÞ, steady sate groundwater head; (m)
h0ð0Þ; h0ðLÞ, initial groundwater head at the left and right

boundary conditions; (m)
h1ð0Þ; h1ðLÞ, steady sate groundwater head at the left and

(continued on next page)
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right boundary conditions; (m)
�h, average saturated thickness; (m)
K, saturated hydraulic conductivity; (m/s)
L, length of the aquifer; (m)
M, right boundary condition transition time; (s)
N, left boundary condition transition time; (s)
BLðtÞ; BRðtÞ, left and right varying boundary conditions; (m)
Sy, aquifer specific yield; (–)
TðxÞ, mean action time (MAT); (s)
VðxÞ, variance of action time (VAT); (s2)
wa; wb, weight functions of A and B, respectively; (m)
a ¼ h1ð0Þ � h0ð0Þ; (m)
b ¼ h1ðLÞ � h0ðLÞ; (m)
c; d; g; h, parameters used to calculate VðxÞ; (m4 s), (m4 s),

(m4 s), (s2)

wðxÞ ¼ gðxÞ½VðxÞ þ TðxÞ2�; (m s2)
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