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a b s t r a c t

We consider a family of exact solutions to a nonlinear reaction–diffusion model,
constructed using nonclassical symmetry analysis. In a particular limit, the
mathematical model approaches the well-known Fisher–KPP model, which means
that it is related to various applications including cancer progression, wound
healing and ecological invasion. The exact solution is mathematically interesting
since exact solutions of the Fisher–KPP model are rare, and often restricted to
long-time travelling wave solutions for special values of the travelling wave speed.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Reaction–diffusion models are commonplace in applied mathematics. These involve one or more parabolic
artial differential equations (pdes) that, in one dimension, are written as

∂u

∂t
= ∂

∂x

(
D(u)∂u

∂x

)
+ R(u). (1)

e discuss possible forms for D(u) and R(u) shortly, but note for the purposes of our study, that one of the
ost popular examples of (1) is the Fisher–KPP equation (in dimensionless form)

∂u

∂t
= ∂2u

∂x2 + u(1 − u), (2)

[1,2], which is used extensively. The overall theme of our work is to study a family of exact solutions of a
version of (1) that is closely related to solutions of (2).

More generally, in reaction–diffusion models of the form (1), the nonlinear reaction term R(u) can be used
to model reproduction in ecology [3,4] or proliferation in cell biology [5,6]. A common form for this reaction
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Fig. 1. Nonlinear diffusion D(u) and source term R(u). Functions defined in (4) are shown for β = 0.1 (blue), β = 1 (orange)
nd β = 10 (yellow), with the arrows indicating the direction of increasing β. Also included as a dashed black curve is the constant
iffusivity and logistic growth functions from the Fisher–KPP Eq. (2), which D(u) and R(u) approach in the limit β → ∞.

erm is (in dimensional variables) the logistic growth term R(u) = λu(1−u/K), where λ is the reproduction
ate and K is the carrying capacity. Indeed, this is the reaction term in (2). A feature of the logistic term
s that the per capita growth rate λ(1 − u/K) linearly decreases to zero at u = K. Other qualitatively
imilar monostable reaction terms R(u) that retain key properties, including a single local maximum and
(0) = R(K) = 0, are routinely studied in the literature [4,7]. In this sense, logistic growth falls into a
roader, well-studied class of qualitatively similar reaction terms.

Forms for the nonlinear diffusivity D(u) in (1) vary depending on the application, although linear diffusion
s the most commonly used form (as in the Fisher–KPP model (2)). One option is to take the nonlinear
iffusion to be D(u) = un, where n > 0 [6,8]. Of particular relevance to our study, in the context of modelling
iological cells, is a nonlinear diffusivity D(u) that is a decreasing function of u [9,10].

Much attention has been devoted to deriving exact solutions to versions of (1). Travelling wave solutions
f the Fisher–KPP Eq. (2) were first presented by Ablowitz & Zepatella [11] and then others [12,13]. For

the more general class of reaction–diffusion Eqs. (1) with linear diffusion, a number of travelling wave
solutions exist [14–16] and some periodic solutions have been found [17,18]. Nonclassical symmetry solutions
have been constructed [19,20], and these solutions can also be found using Painlevé analysis [21,22]. Fewer
exact analytical solutions exist when the diffusivity is nonconstant (and the reaction term is nonzero);
however, some nonclassical symmetry solutions for particular forms of D(u) and R(u) have been presented
in Refs. [23–27].

Here we report on a family of exact analytical solutions to (1),

u(x, t) = β

[
exp

(
ln

(
1 + u0

β

)
exp(−βt) cos

(√
1 + β x

))
− 1

]
, 0 < x <

π

2
√

1 + β
, (3)

hich hold for
D(u) = β

u + β
, R(u) = β(1 − u) ln

(
1 + u

β

)
. (4)

he form of R(u) and D(u) in (4) is such that (1) is analogous to (2), as indicated in Fig. 1. For example,
(u) is a monostable reaction term with zeros at u = 0 and 1, just like the logistic growth term in (2).
urthermore, the one-parameter family R(u) approaches the logistic growth term in the limit β → ∞, as is
lear from Fig. 1(b). The nonlinear diffusivity D(u) in (4) is a positive decreasing function of u for all u > 0.
gain, the family of functions D(u) approaches the constant D(u) ≡ 1 in the limit β → ∞, which reinforces

he analogy between these models. Therefore, the exact solutions (3) fall into the same class of solutions to
2) and we discuss this connection in some detail.
2



S.W. McCue, B.H. Bradshaw-Hajek and M.J. Simpson Applied Mathematics Letters 132 (2022) 108151

c
t
C
t
d

t
a
e

2

2

f
o
s
c

w
i
c
s
a
t

a

r

T
o

Very briefly, the property that D(u) is a decreasing function of u can be used to model density-dependent
ell motility. Under some circumstances, cells that are more crowded may be more restricted in terms of
heir movement and therefore less motile, giving rise to lower diffusion at a population scale. For example,
ai et al. [9,10] use the exact form for D(u) given in (4) in their studies of cell migration, explaining that this

erm models contact inhibition of cell locomotion. As part of their work, they fit their model to experimental
ata using fibroblast cells to estimate parameters, including the value of β in D(u) [10].

The content of the letter is as follows. We summarise in Section 2.1 the nonclassical symmetry analysis
hat leads to (3). In Section 2.2 we explain how the solutions describe population extinction. Limits of large
nd small β are treated briefly in Section 2.3, noting the connection with Eq. (2), while a further illustrative
xample is provided in Section 2.4. We close in Section 3 with a discussion.

. Derivation and interpretation

.1. Nonclassical symmetry solution of the nonlinear reaction–diffusion equation

Classical Lie point symmetry analysis, first introduced by Sophus Lie, provides a systematic way to search
or the invariant quantities in a differential equation, by seeking transformations that leave the equation
f interest invariant. These classical symmetries can lead to the well-known travelling wave solutions or
cale-invariant solutions (for more detail see for example [28,29]). Galaktionov, et al. [30] provided the first
omplete classical symmetry classification for equations of type (1).

The nonclassical symmetry (or Q-conditional) method was first introduced by Bluman and Cole [31],
here we again seek transformations that leave the equation of interest invariant, but also require that the

nvariant surface condition be satisfied. This approach can sometimes result in additional symmetries that
annot be found using the classical method. If nonclassical symmetries can be found, they can be used in the
ame way as those found using the classical method. That is, the differential equation can be simplified and
n analytic solution may be constructed. The most complete nonclassical symmetry analysis of equations of
ype (1) is given in Refs. [23,24].

To construct the exact solution (3) we use a nonclassical symmetry admitted by Eq. (1) whenever R(u)
nd D(u) are related by [23,24]

R(u) =
(

α − β

D(u)

) ∫ u

u∗
D(u′) du′, (5)

where u∗ is one of the zeros of R(u) (here we choose u∗ = 0) and α and β are constants. Eq. (1) can be
educed to the Helmholtz equation Ψxx + αΨ = 0, where Ψ(x) is related to u(x, t) by∫ u

u∗
D(u′) du′ = e−βtΨ . (6)

When α = k2 > 0, solutions to the Helmholtz equation can be written in terms of sine and cosine functions,

Ψ(x) = c1 sin kx + c2 cos kx, (7)

where c1 and c2 are constants.
A pair of nonlinear reaction and diffusion terms that satisfy relationship (5) and are analogous to the

Fisher–KPP equation are

D(u) = β(1 − b)
α(u − b) , R(u) = β(1 − u) ln

(
1 − u

b

)
. (8)

he solution of (1) with D(u) and R(u) given by (8) can be found by rearranging transformation (6) to
btain

u(x, t) = b

[
1 − exp

(
α exp(−βt)Ψ(x)

)]
. (9)
β(b − 1)
3
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.2. One-parameter family of solutions

To reduce the number of parameters in (7) and (9), we are motivated by the linear problem [32]

∂u

∂t
= ∂2u

∂x2 + u, 0 < x < L, (10)

∂u

∂x
= 0 on x = 0, (11)

u = 0, on x = L, (12)

u(x, 0) = f(x), 0 < x < L, (13)

or which an exact solution can be found using separation of variables. For large time, this solution behaves
ike u ∼ A1e−(π2/4L2−1)t cos (πx/2L), where A1 is related to the initial condition (13). In the derivation of
(10)–(13) from a dimensional system, the length-scale and time-scale of the original physical problem are
related to the dimensional diffusion coefficient and growth rate parameter in the usual way so that the pde
(10) does not contain any parameters. Apart from the initial condition (13), the only parameter in (10)–(13)
is L. The final key point to note about (10)–(13) is that, because the sign of the eigenvalue −π2/4L2 + 1
dictates long-time behaviour, clearly the solution of (10)–(13) grows without bound if L > π/2 and decays
(goes extinct) if L < π/2.

Returning to (1), the properties of solution (9) become much clearer if we choose the diffusion and reaction
functions in (8) so that D(u) → 1 and R(u) ∼ u as u → 0. In other words, for small population density u, we
want our nonlinear system to behave close to the linear system (10)–(13). As a result of this argument, we
choose b = −β, α = 1 + β. Further, to match the boundary conditions (11)–(12), we choose c1 = 0. Finally,
to ensure u(0, 0) = u0, say, we choose c2 = −β ln (1 + u0/β).

Before moving on, it is worth noting we are free to replace t with t − t0 in (3), since the original pde (1)
is invariant under translations in time. However, in that case the term ln(1 + u0/β)eβt0 is a constant, so
changing t0 is equivalent to redefining u0. Therefore it is only worth keeping one of u0 or t0. We choose to
eep the former.

With a single parameter β, we can illustrate the exact solutions with representative values of β. For
example, we show in Fig. 2(a)–(c) the solutions (3) for β = 0.1, 1 and 10 (solid black curves), where
the arrow indicates increasing time. There are qualitatively similar features in each case. For example, the
solutions have the property ∂u/∂x = 0 at x = 0, corresponding to no flux at the left boundary. Further,
the solutions each have u = 0 at x = π/(2

√
1 + β), which is a Dirichlet condition at the right boundary.

hus, physically speaking, there is a loss of mass at the right boundary and indeed u continues to decay
ntil the population goes extinct as t → ∞. Note the domain for (3) is decreasing in size as β increases.
lso included in Fig. 2(a)–(c) are numerical solutions (green dashed), computed using finite differences with
no-flux and Dirichlet conditions at the left and right boundaries, respectively, with the details included on
itHub. Clearly there is a very good match, confirming the derivation of the exact solution. We return to
ig. 2 shortly.

.3. Asymptotic limits

The regime β ≫ 1 is interesting since, from (4),

D(u) ∼ 1 − u

β
, R(u) ∼ u(1 − u) + u2(1 − u)

2β
, as β → ∞. (14)

hat is, for large β, to leading order the diffusion term is constant and the reaction term is logistic. Therefore,
he reaction–diffusion Eq. (1) with (4) is a close approximation of the Fisher–KPP Eq. (2). In this limit,
4
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Fig. 2. Exact time-dependent solutions of (1). (a)–(c) Exact (solid black) and numerical (dashed green) solutions for β = 0.1, 1
and 10, respectively, with the arrows showing the direction of increasing t. Profiles in (a)–(c) are given at βt = 0, 2, 4, 6 and 8,

t = 0, 0.2, 0.5, 1 and 2, and βt = 0, 1, 2, 5 and 10, respectively. Profiles in (d)–(f) compare numerical solutions for u(x, 0) = 1 with
he exact solutions (3) with u0 chosen so that the initial mass is the same in each case. In (d)–(f) profiles are compared at βt = 0, 4, 6
nd 8, βt = 0, 1, 2 and 3, and βt = 0, 0.1, 0.2 and 0.3. Numerical solutions are obtained using the method of lines where the x variable
s discretised on a uniform mesh with 201 grid points.

rom (3) we have u ∼ u0e−βt cos
(√

1 + βx
)

on 0 < x < π/(2
√

1 + β) as β → ∞. Note the domain length
ontinues to shrink as β increases.

In the limit β → 0+, we have π/(2
√

1 + β) → π/2−, so the domain for the exact solution (3) when β ≪ 1
is approximately 0 < x < π/2. For β ≪ 1, the nonlinear diffusivity D(u) is not close to being constant, as
we can see from Fig. 1(a). While the solution u(x, t) decays very slowly for β ≪ 1, ultimately for t ≫ 1/β

he population density becomes small and u ∼ β ln (1 + u0/β) e−βt cos
(√

1 + βx
)

in this regime.

.4. Illustrative example

As is common with exact solutions that come from symmetry analysis, we are not free to choose the initial
ondition in (3); instead, the solution at t = 0 must be

u(x, 0) = β

[
exp

(
ln

(
1 + u0

β

)
cos

(√
1 + β x

))
− 1

]
. (15)

owever, we are free to choose u0 = u(0, 0) to illustrate a simple but practical example. Suppose we are
tudying (1) and employ the obvious initial condition from a mathematical modelling perspective, namely
(x, 0) = 1 for 0 < x < L. In this case the initial mass of the solution is L. With this in mind, we choose
he value of u0 in our exact solution (3) so the initial mass of the solution is π/(2

√
1 + β) (remembering

hat L = π/(2
√

1 + β) for (3)). By integrating (15) from x = 0 to π/(2
√

1 + β), we arrive at the nonlinear
lgebraic equation

1 + 1 = J0

(
ln

(
β + u0

))
+ L0

(
ln

(
β + u0

))
, (16)
β β β

5
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here J0(x) is the Bessel function of the first kind and L0(x) is a modified Struve function of the first
ind. For a given β, we can solve (16) for u0 numerically, for example using Newton’s method. The result of
hese calculations is illustrated in Fig. 2(d)–(f). Here, numerical solutions (green dashed) computed for the
hysically interesting initial condition u(x, 0) = 1 are compared to the exact solution with u0 found from

(16). While there is no match for small time, we argue that the exact solutions (3) provide reasonably good
approximations for the numerical solutions for intermediate to large times.

3. Discussion

In this article we have analysed a one-parameter family of exact solutions (3) of reaction–diffusion model
(1), where the nonlinear diffusion and reaction terms are given by (4). To put this work into context, these
exact solutions are qualitatively similar to solutions of the well-known Fisher–KPP model

∂u

∂t
= ∂2u

∂x2 + u(1 − u), 0 < x < L, (17)

∂u

∂x
= 0 on x = 0, (18)

u = 0, on x = L, (19)

u(x, 0) = f(x), 0 < x < L, (20)

rovided L < π/2. This correspondence is possible because both R(u) and the logistic growth term u(1 − u)
re monostable with roots at u = 0 and u = 1 and both functions are asymptotic to u as u → 0. Indeed, for
he one-parameter family of exact solutions (3)–(4) and all solutions to the Fisher–KPP model (17)–(20),

we have
u ∼ U1e−(π2/4L2−1)t cos

(πx

2L

)
as t → ∞, (21)

here L is: any constant 0 < L < π/2 for the Fisher–KPP model; related to β > 0 for our exact solutions
3) via L = π/(2

√
1 + β). Further, the constant U1 in (21) is: related to f(x) in (20) in Fisher–KPP in

a complicated way; or given by U1 = β ln (1 + u0/β) for our exact solutions (3). Therefore, in this sense,
the exact solutions (3) are perfectly sensible and consistent with previous understanding of these types of
eaction–diffusion models (including the extinction property L < π/2, for example [33–35]). Finally, an
dditional connection is that (1) with (4) approaches the Fisher–KPP equation in the limit β → ∞, as
ndicated by (14).

There is the usual downside that comes from symmetry analysis, which is that we are not free to change
he initial condition (15) to suit the physical application or experimental data, for example. Regardless, (15)
s a decreasing function with properties u(0, 0) = u0 and u(L, 0) = 0, which is certainly reasonable, provided
0 = O(1). Of course, what makes the family of exact solutions (3) exceptional and worth recording is not
hether they match a particular initial condition, but rather that fully explicit time-dependent solutions to
onlinear reaction–diffusion models are very rare. Further, apart from explicitly showing how the solution
volves, these formulae can also be used as benchmarks for numerical simulations, for example by researchers
r in undergraduate courses for numerical methods in nonlinear pdes.

We close by mentioning that the particular nonclassical symmetry used to construct solution (9) is
alid in any number of dimensions and in any coordinate system [36], so that solutions to Eq. (1) with
onlinear diffusivity and reaction given by (8) could be constructed in Rn. For example, in radially symmetric
oordinates in R2, the solution (9) will still be valid, however the solution of the Helmholtz equation, Ψ(r),
ill be written in terms of Bessel functions and hold on L < λ/

√
1 + β, where λ is the first zero of the

essel function J0(x) (in R3 the solution will be in terms of spherical Bessel functions [27]). The higher
imensional analogue of many of the other results presented here can also be produced, for example the
olution will decay and become extinct as t → ∞.
6
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