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Abstract
Migration of cells andmolecules in vivo is affected by interactions with obstacles. These interactions
can include crowding effects, as well as adhesion/repulsion between themotile cell/molecule and the
obstacles. Herewe present an analytical framework that can be used to separately quantify the roles of
crowding and adhesion/repulsion using a lattice-based randomwalkmodel. Ourmethod leads to an
exact calculation of the long time Fickian diffusivity, and avoids the need for computationally
expensive stochastic simulations.

The motion of cells and molecules through in vivo
biological environments is affected by the presence of
other cells and scaffolds that can act as obstacles [1–4].
Interactions between cells and obstacles can include
both crowding effects [5, 6], as well as adhesion/
repulsion effects [7, 8]. A great deal of theoretical
progress has been made in terms of developing
mathematical insight into how adhesion between
motile cells impacts in vitro experiments without any
obstacles present [9–12]. However, mathematical
models describing the impact of both crowding and
adhesion/repulsion in vivo with obstacles present are
predominantly based on simulation studies, without
any underlying analysis [1, 5, 13, 14].

While we anticipate that both crowding and
adhesion impede the motion of cells in vivo, it is not
possible to quantify the relative roles of these two
mechanisms based on intuition alone. Although it is
possible to perform simulations that include both
crowding and adhesion, simulation studies can be
time consuming, and can fail to providemore general
insight. To address these limitations we consider a
stochastic, lattice-basedmodel describing themotion
of an agent (e.g. a cell or biological molecule) through
an environment that is randomly populated by
immobile obstacles at density [ ]f Î 0, 1 . Themotion
of the agent is affected by both crowding and

adhesion/repulsion between the agent and the obsta-
cles. Since themodel involves just a single agentmov-
ing amongst a population of obstacles, there is no
adhesion/repulsion between agents. The strength of
adhesion/repulsion is measured by z Î [−1, 1]: set-
ting z = 0 corresponds to pure crowding with no
adhesion/repulsion; z > 0 corresponds to combined
adhesion and crowding; and z < 0 corresponds to
combined repulsion and crowding. We present an
exact method that can be used to quantify the relative
roles of crowding and adhesion/repulsion by produ-
cing exact calculations of the long time Fickian diffu-
sivity, D, of the motile agent. Using this method we
calculate ( )f zD , so that we are able to quantify the
roles of both crowding and adhesion/repulsion in
terms of the long time Fickian diffusivity. Our results
suggest that there is a threshold density of obstacles
(f » 0.3) below which adhesion/repulsion has a
negligible impact on the long time Fickian diffusivity.
In contrast, above this threshold (f > 0.3), adhe-
sion/repulsion interactions have a significant influ-
ence on the long time Fickian diffusivity. The
accuracy of our exact calculations is tested using ran-
dom walk simulations, and although we present
results for a two-dimensional square lattice, our
approach applies to any regular lattice in two or
three-dimensions.
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We consider a square lattice with unit lattice spa-
cing,D = 1, and dimensionX×Y. Sites are indexed
(i, j) so that each site has location ( ) ( )= D Dx y i j, ,
with   -x X0 1 and   -y Y0 1. To initiate
a simulation, lattice sites are randomly populated
with immobile and impenetrable obstacles to a spa-
tially uniform density, f, with, at most, one obstacle
per site. A motile agent is placed on a vacant site, and
allowed to undergo a nearest neighbor random walk
in which all potential motility events that would place
the agent on a site that is occupied by an obstacle are
aborted.

During each discrete time step, of duration
t = 1, the probability that the motile agent attempts
to step to a randomly chosen nearest neighbor lattice
site is

( )z
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⎝
⎞
⎠

p
N

4
1

4
, 1m

where [ ]Îp 0, 1m is the probability that an isolated
agent will attempt to move during a time interval of
duration τ, =N 0, 1, 2, 3 or 4, is the number of
nearest neighbor sites occupied by obstacles, and z Î
[−1, 1] is the adhesion/repulsion parameter. Note
that, to ensure that both the net probability of move-
ment and the net probability of remaining stationary
during any time step are always greater or equal to
zero, and less than or equal to unity, we consider five
different situations. In these situations the agent in
question is adjacent to either =N 0, 1, 2, 3 or 4
obstacles. Solving the resulting set of inequalities for
these five different situations leads us to write the
adhesion/repulsion factor in equation (1) as
( )z- N1 4 , with z Î [−1, 1].

The schematic in figure 1(a) illustrates how
crowding and adhesion/repulsion are incorporated
into the model. The lattice site containing the red
agent is not adjacent to any obstacles (N= 0) and the
probability that the red agent will move during a time

step of duration τ is simply pm, which is independent
of ζ. Since there are no obstacles surrounding the red
agent, it is able to move to any of the four nearest
neighbor sites, with the target site being chosen at
random. In contrast, the blue agent is adjacent to one
obstacle (N= 1) and the probability that the blue
agent will move during a time step of duration τ

depends on the strength of adhesion/repulsion.
Therefore, the motility of agents that are adjacent to
one or more obstacles are affected by the strength of
adhesion/repulsion to those obstacles. If the blue
agent attempts to move, the direction of movement
will be chosen at random. If, in this case, the blue
agent attempts tomove in the positive x direction, the
potential movement event will be aborted due to
crowding effects caused by the obstacle.

To quantify how crowding and adhesion/repul-
sion affect themotility of a singlemotile agent, we con-
sider performing a stochastic simulation in which
we record the agent’s squared displacement,

( ) ( ) ( )= +r t x t y t2 2 2 , where ( )x t2 and ( )y t2 repre-
sent the components of the squared displacement in
the x and y directions, respectively. Following earlier
studies [1, 5, 13, 14] we assume that the mean squared
displacement follows a power law

( ) ( ) ¯ ( )á ñ = ar t d D t2 , 22

where d=2, 3 is the physical dimension, ·á ñ denotes
the average over a large ensemble of identically
prepared realizations, and D̄ is a generalized diffusivity
with units [ ]aL T2 which is less than the diffusivity
when no obstacles are present, ( )t= DD p d2m0

2 .
The exponent α is a positive constant that can be used
to classify the type of transport process taking place,
with a = 1 corresponding to Fickian diffusion and
a < 1 corresponding to subdiffusion [1, 5, 13, 14].
Rearranging equation (2) gives

Figure 1. (a) Lattice schematic illustrating how crowding and adhesion/repulsion are incorporated into the randomwalkmodel.
Circles representmotile agents and the squares represent immobile obstacles. The green lines between the agent and obstacle indicate
that themodel incorporates adhesion/repulsion between themotile agent and immotile obstacles. (b)Plot of ( ( ) )á ñr t tlog10

2 as a
function of ( )tlog10 (green solid) from a suite of simulationswith pm=1.0, z = 0, f = 0.2,X=10 andY=10. The ensemble
average is obtained by averaging over 100 000 identically prepared realizations. The lower horizontal line (black dashed) shows

( ¯ )Dlog 410 , where ¯ =D 0.095 is the exact calculation of the Fickian diffusivity. The upper horizontal line (red dashed) shows
( )Dlog 410 0 , for comparison.
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This means that if the power law in equation (2)
accurately describes the evolution of themean squared
displacement data, a plot of ( ( ) )á ñr t tlog10

2 as a
function of ( )tlog10 will be a straight line for all >t 0.
If the transport process is Fickian diffusion (a = 1)
the straight line will be horizontal, with zero slope. In
contrast, if the transport process is subdiffusion
(a < 1) the straight linewill have negative slope.

To demonstrate these ideas we perform an ensem-
ble of simulations without adhesion/repulsion and
with f = 0.2 on a lattice with periodic boundary con-
ditions, and we plot ( ( ) )á ñr t tlog10

2 as a function of
( )tlog10 in figure 1(b). Consistent withmany previous

simulation studies [1, 5, 13, 14, 15–17], we observe
that ( ( ) )á ñr t tlog10

2 follows a curve. Initially the
curve has a negative slope, and the curve tends to a
horizontal asymptote as  ¥t . This suggests that the
transport process becomes Fickian in the long time
limit,  ¥t , with a reduced Fickian diffusivity, D̄.
For the data in figure 1(b), we fit a horizontal line to
the data in the interval  t10 103 4, giving
¯ »D 0.095. This means that the obstacles have
reduced the long time Fickian diffusivity compared to
the case where there are no obstacles present,

( )t= D =D p d2 0.25m0
2 , in this case.

Unfortunately, using stochastic simulations to
compute the long time Fickian diffusivity like we did
in figure 1(b) is problematic for two reasons. First, a
very large number of identically prepared realizations
of the stochastic process are required to produce suffi-
ciently smooth mean squared displacement data. Sec-
ond, the Fickian diffusion regime is only reached in
the long time limit,  ¥t , meaning that we must
perform a very large number of identically prepared
realizations over a very long period of time to obtain a
reasonable approximation of D̄. These two issues
motivate us to develop an exact calculation of D̄ that
does not rely on stochastic data. To calculate the long
time Fickian diffusivity wemodify a method originally
proposed by Mercier and Slater [18–20]. Our mod-
ification to theirmethod is to incorporate the effects of
adhesion/repulsion.Wewill describe how to apply the
method to calculate the long time Fickian diffusivity in
each component direction. All of the details are given
for the xCartesian direction, and adapting themethod
to apply to the y and z Cartesian directions is
straightforward.

To begin with we apply the Nernst–Einstein rela-
tionship, which is a special case of the fluctuation–dis-
sipation theorem [21]

¯ ( ) ( )m
m

=D D , 4x 0
0

where ( )m represents the probability ofmovement in
the positive x direction when the motion includes a
bias of strength  1, and m0 is the probability of
movement in the positive x direction where there is no

bias. Themotility is given by

( ) · ˆ ( )


m =
nv

, 5

where v and n̂ are vectors whose kth elements denote
the (local) velocity at the kth site, and the long time
limit of the probability of locating the agent at the kth
site, respectively. In practice, we calculate n̂ by
constructing the transition matrix associated with the
lattice, T, and then solving =T n n for n, fromwhich
we calculate ˆ ∣ ∣=n n n . The elements of T, Ta b, ,
denote the probability that the agent will step from site
a to site b per time step. Therefore, T encodes details
about the strength of adhesion/repulsion, the effects
of crowding, and the effects of different boundary
conditions [20].

The velocity vector, v , can be calculated element-
wise using ( ) = -+ + - -v k p L p L ,where v(k ) is the kth
element of v , p are the probabilities of movement in
the positive and negative x directions, =L 1 if the
relevant target site is vacant and =L 0 if the relevant
target site is occupied by an obstacle. Once we have
applied this method to calculate D̄x , we perform ana-
logous calculations in the y and z directions to give D̄y

and D̄z , respectively. Calculating the long time Fickian
diffusivity in each direction allows us to investigate the
possibility of any anisotropy in the system. For our cal-
culations here, in two-dimensions with randomly
placed obstacles, we observe no anisotropy and we
have ¯ ¯»D Dx y on a sufficiently large lattice. Therefore,
we report our results in terms of the total diffusivity,
¯ ¯ ¯= +D D Dx y [20]. To demonstrate the accuracy of
our calculation, we apply it to the lattice configuration
previously considered in figure 1(b) and find that
¯ =D 0.095, which is identical to the result obtained
using stochastic simulations. To visualize the match
between the exact calculation and the simulation
results, we superimpose a horizontal line at ( ¯ )Dlog 410

in figure 1(b), where ¯ =D 0.095 is the exact calcul-
ation of the long time Fickian diffusivity. To empha-
size the differences between the transport process
where obstacles are present ( )f > 0 fromwhen obsta-
cles are absent ( )f = 0 , we plot a horizontal line at

( )Dlog 410 0 infigure 1(b).
It is important to note that certain arrangements of

obstacles lead to ¯ =D 0. Any situationwhere obstacles
form a closed loop and the motile agent is placed
inside the closed loop will lead to ¯ =D 0, as discussed
in section 2.1 of Ellery et al [20]. This situation can
occur for any value of f > 0. One way of dealing with
these special cases would be to apply the exact calcul-
ation to a suite of identically prepared lattices and to
exclude those lattices that contain closed loops of
obstacles and give ¯ =D 0. We could then calculate an
average diffusivity by averaging D̄ for the remaining
lattices where ¯ >D 0. Instead of excluding these cases,
we take a simpler, unbiased approach by calculating D̄
for a number of identically prepared lattices and report
the average value of D̄ across all randomly populated
lattices. We acknowledge that some of these lattices
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may contain closed loops of obstacles, meaning that
we may have ¯ =D 0 in some cases [20]. Furthermore,
we note that the distinction between situations where
we obtain ¯ =D 0 and ¯ >D 0 is independent of the
percolation threshold [21, 22]. Indeed, our calcula-
tions confirm that we can have situations where
¯ =D 0 on a finite sized lattice wheref is below the per-
colation threshold as well as other situations where
¯ >D 0 on a finite sized lattice wheref is above the per-
colation threshold.

Now that we have explained how the exact calcul-
ation of the long time Fickian diffusivity can be per-
formed, we apply the calculation to a family of lattices
with different obstacle densities, f. By repeating our
calculations of the long time Fickian diffusivity with
different values of ζ, we can construct the function
¯ ( )f zD , , showing how the long time Fickian diffusiv-
ity varies with both the obstacle density and the
strength of adhesion/repulsion. A contour plot of
¯ ( )f zD , is shown in figure 2(a) for z Î [−0.9, 0.9]
and [ ]f Î 0, 0.5 .When f = 0 and there are no obsta-
cles, we obtain ¯ ( )z =D D0, 0, as expected. Compar-
ing the slope of ¯ ( )f zD , in each of the f and ζ

directions indicates that, in general, the long time
Fickian diffusivity is far more sensitive to f than ζ. In
particular, for small values of f the diffusivity appears,
at this scale, to be relatively insensitive to the strength
of adhesion/repulsion. However, at larger values of f,
there is an significant dependence on ζ.

To further explore the effects of adhesion/repul-
sion, figure 2(b) shows the ratio ¯ ( ) ¯ ( )f z fD D, , 0 for
different values of ζ. This ratio is approximately unity
for all values of ζwhen f < 0.3. For f > 0.3 the affect
of adhesion (z > 0) is to decrease ¯ ( ) ¯ ( )f z fD D, , 0 ,
whereas the affect of repulsion (z < 0) is to increase
¯ ( ) ¯ ( )f z fD D, , 0 , as we might anticipate. The
increase in ¯ ( )f zD , due to repulsion can be as great as
1100% for the values off and ζ that we consider.

In summary, we present a method that allows us to
quantify the roles of both crowding and adhesion/
repulsion by quantifying the long time Fickian diffusiv-
ity of a motile agent moving through a crowded
environment. A key feature of our approach is that it
avoids the needs for performing stochastic simulations.
Our calculations allow us to examine how the long time
Fickian diffusivity depends both on the density of obsta-
cles,f, and the strength of adhesion/repulsion, ζ. Addi-
tional results (not presented) confirm the accuracy of
our method since the maximum deviation between the
exact calculations and estimates based on repeated sto-
chastic simulation results is less than 0.1% for the range
of f and ζ considered in figure 2(a). A key feature of our
results is that the long time impact of adhesion/repul-
sion is negligible for sufficiently small obstacle densities,
f < 0.3. Therefore, our results suggest that estimates of
the long time Fickian diffusivity for low obstacle den-
sities can neglect the affect of adhesion/repulsion. In
contrast, for moderate to high obstacle densities,
f > 0.3, our calculations show that adhesion/repulsion
has an important impact that ought to be accounted for.
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