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Survival probability for a diffusive process on a growing domain
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We consider the motion of a diffusive population on a growing domain, 0 < x < L(t), which is motivated
by various applications in developmental biology. Individuals in the diffusing population, which could represent
molecules or cells in a developmental scenario, undergo two different kinds of motion: (i) undirected movement,
characterized by a diffusion coefficient, D, and (ii) directed movement, associated with the underlying domain
growth. For a general class of problems with a reflecting boundary at x = 0, and an absorbing boundary
at x = L(t), we provide an exact solution to the partial differential equation describing the evolution of the
population density function, C(x,t). Using this solution, we derive an exact expression for the survival probability,
S(t), and an accurate approximation for the long-time limit, S = limt→∞ S(t). Unlike traditional analyses on
a nongrowing domain, where S ≡ 0, we show that domain growth leads to a very different situation where
S can be positive. The theoretical tools developed and validated in this study allow us to distinguish between
situations where the diffusive population reaches the moving boundary at x = L(t) from other situations where
the diffusive population never reaches the moving boundary at x = L(t). Making this distinction is relevant to
certain applications in developmental biology, such as the development of the enteric nervous system (ENS). All
theoretical predictions are verified by implementing a discrete stochastic model.
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I. INTRODUCTION

A canonical problem relevant to several developmental
biology processes is to consider the diffusion of a population of
molecules or cells on a growing tissue [1–5]. An example of a
developmental process involving the diffusion of a population
of molecules within a growing tissue is the development of
the wing disk in the Drosophila embryo [6,7]. Wing disk de-
velopment is thought to be regulated by morphogen gradients,
which are produced by molecular diffusion within the growing
wing disk tissues [8,9]. An example of a developmental
process involving the diffusion of a population of cells within
a growing tissue is the development of the enteric nervous
system (ENS) during vertebrate embryogenesis [10–14]. ENS
development involves the diffusion of population of precursor
cells that are initially confined toward the oral end of the
developing gut. As development proceeds, the population of
precursor cells spreads, by diffusion, toward the anal end of the
gut. The diffusion of the precursor cells through the developing
gut tissue occurs simultaneously as the gut tissues elongate
[15–17].

In these types of problems the population density profile
is thought to evolve according to an advection-diffusion
mechanism [18–24]. The diffusion mechanism is associated
with individual cells or molecules in the population undergoing
an undirected random walk, and the advection mechanism
describes the directed motion of individuals driven by the
underlying tissue growth. Since the rate of advection is
spatially dependent [18–24], the advection process also gives
rise to a dilution effect. Here, we consider a diffusion process
on a one-dimensional growing domain, 0 < x < L(t), where
L(t) is the increasing length of the domain. Inspired by
previous numerical simulations of ENS development [18,19]
we consider a general class of problems where the diffusing

population is initially located near the boundary at x = 0,
and we ask the question whether the diffusing population is
ever able to reach the moving boundary at x = L(t). Broadly
speaking we anticipate two different types of behavior:
(i) when the rate of tissue growth is sufficiently large compared
to the diffusivity of the spreading population the initial profile
will never reach the moving boundary at x = L(t); and
(ii) when rate of tissue growth is sufficiently small compared
to the diffusivity of the spreading population the initial profile
will reach x = L(t), at some finite time. Developing analytical
methods that distinguish between these two outcomes is impor-
tant since, in certain applications such as ENS development,
normal outcomes are associated with the spreading profile
reaching the moving boundary at x = L(t), whereas abnormal
outcomes are associated with situations where the spreading
profile fails to reach x = L(t) [15–17].

In this work we distinguish between these two situations
using the concept of survival probability [25,26]. To achieve
our aim we first solve the relevant continuum partial differ-
ential equation to give the evolution of the density profile,
C(x,t), that describes the density of diffusing individuals
at location x and time t . Using our solution for C(x,t),
we derive exact expressions for the survival probability,
S(t), for exponentially and linearly growing domains, and
we note that our approach is general and can be applied
to other forms of L(t) if required. Employing a leading
eigenvalue approximation [27], we derive a straightforward
mathematical expression for the long-time survival probability,
S = limt→∞ S(t). This expression succinctly shows how the
details of the initial condition, diffusivity, and the tissue growth
rate influences the survival probability. This approximation
provides a straightforward criteria to distinguish between cases
where the diffusing population can reach x = L(t) from other

1539-3755/2015/91(4)/042701(5) 042701-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.91.042701


MATTHEW J. SIMPSON, JESSE A. SHARP, AND RUTH E. BAKER PHYSICAL REVIEW E 91, 042701 (2015)

cases where the diffusing population can not reach x = L(t).
To provide a physical interpretation of our analysis, we also
present results from a stochastic model, from which we
estimate survival probabilities for a diffusion process on a
growing domain, and show that the discrete and continuum
results compare very well.

II. MATHEMATICAL MODELS

A. Continuum mathematical model

Domain growth is associated with a velocity field in the
elongating tissue [18,19,21–23]. This velocity field causes
a point within the growing tissue at location x to translate
to x + v(x,t)τ during a small time period of duration τ . By
considering the expansion of an element of initial width �x,
we can derive an expression relating L(t) and v(x,t), which
can be written as

dL(t)

dt
=

∫ L(t)

0

∂v

∂x
dx. (1)

For uniform growth conditions, where ∂v/∂x is independent
of position, we have ∂v/∂x = σ (t) [2–4,18,21]. Combining
this with Eq. (1) gives

∂v

∂x
= σ (t) = 1

L(t)

dL(t)

dt
. (2)

Without loss of generality, we assume that the domain elon-
gates in the positive x direction with v(0,t) = 0. Integrating
Eq. (2) gives

v(x,t) = x

L(t)

dL(t)

dt
. (3)

We now consider a conservation statement for a density func-
tion, C(x,t), describing the density of diffusing individuals
at location x and time t . Assuming that the density function
evolves according to a linear diffusion process on the growing
domain, the associated conservation statement can be written
as

∂C

∂t
= D

∂2C

∂x2
− ∂(Cv)

∂x
, 0 < x < L(t), (4)

where D is the diffusivity and v is the velocity associated with
the domain growth, given by Eq. (3). Expanding the advection
term on the right of Eq. (4) gives two terms: (i) −v∂C/∂x,
which is a standard advection term [27], and (ii) −C∂v/∂x,
which, since ∂v/∂x > 0, is a domain growth-induced dilution
term [2–4,18,21]. Inspired by Landman’s previous numerical
simulations of ENS development [18], we focus on the initial
condition

C(x,0) =
{

1 0 � x < γ ,

0 γ � x � L(0),
(5)

which corresponds to some initial length of the domain, 0 �
x < γ , uniformly occupied at a maximum density, and the re-
maining portion of the domain is vacant. This initial condition
is relevant to ENS development since the initial condition is
confined toward the x = 0 (oral) end of the tissue [18]. Varying
γ allows us to alter the width of the initial population and we
will later make a comment about how the survival probability

depends on the width of the initial condition. At x = 0 we im-
pose a no-flux boundary condition, ∂C/∂x = 0, which is con-
sistent with the idea that the diffusing cells or molecules cannot
leave the end of the tissue at x = 0. At x = L(t) we impose
an absorbing boundary condition, C[L(t),t] = 0. We interpret
the absorbing boundary as indicating that individual cells or
molecules in the diffusing population will leave the domain
when they reach x = L(t). Although all our analysis corre-
sponds to this set of initial conditions and boundary conditions,
it is possible to repeat all of our analysis for different forms of
C(x,0) and other types of boundary conditions, if required.

To solve Eq. (4) for C(x,t), we use a boundary fixing trans-
formation, ξ = x/L(t), which, with v = ξdL(t)/dt , gives

∂C

∂t
= D

L2(t)

∂2C

∂ξ 2
− σ (t)C, 0 < ξ < 1. (6)

Rescaling time, T (t) = ∫ t

0 D/L2(s) ds [28], gives

∂C

∂T
= ∂2C

∂ξ 2
+ f (T )C, 0 < ξ < 1, (7)

where f (T ) = −L2(t)σ (t)/D. The solution of Eq. (7) is given
by

C(ξ,T ) =
∞∑

n=1

An cos (λnξ ) exp

[∫ T

0
f (T ∗)dT ∗ − λ2

nT

]
,

(8)

where λn = (2n − 1)π/2 and n is a positive integer. The exact
solution for C(ξ,T ) can be rewritten in terms of the original
coordinates, giving C(x,t), and the Fourier coefficients, An,
can be chosen to ensure that the exact solution satisfies Eq. (5)
at t = 0 [27].

Following Redner [25,26] we define the survival probability
as

S(t) =
∫ L(t)

0 C(x,t) dx∫ L(0)
0 C(x,0) dx

, (9)

and our aim now is to develop an exact expression for S(t),
and to examine the properties of this function. While the
framework developed here is valid for general L(t), we focus
on two cases.

B. Exponentially growing domains

For L(t) = L(0)eαt , with α > 0, we have T (t) = D(1 −
e−2αt )/2αL2(0), and the solution of Eq. (4) is

C(x,t) =
∞∑

n=1

An cos

[
λnx

L(t)

]
exp

( − T λ2
n − αt

)
, (10)

where An = 2 sin [λnγ /L(0)] /λn. With this solution we cal-
culate the survival probability, given by Eq. (9), as

S(t) = L(0)

γ

∞∑
n=1

An

λn

sin(λn)exp
( − T λ2

n

)
. (11)

While our expression for S(t) is valid for all t > 0, it is also
useful to calculate the long-time survival probability. To do this
we note that limt→∞ T (t) = D/[2αL2(0)], and we employ a
leading eigenvalue approximation since we anticipate that the
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long-time behavior of S(t) will be dominated by the first term
in the infinite series [27]. This gives

S ≈ 8L(0)

γπ2
sin

[
πγ

2L(0)

]
exp

[
− Dπ2

8αL2(0)

]
, (12)

where S = limt→∞ S(t). This expression gives a very simple
relationship describing how the effects of the diffusivity, D,
the growth rate, α, and the details of the initial condition,
L(0) and γ , control the long term survival probability. For
example, we see that the long-time survival probability decays
exponentially with D, and is inversely proportional to γ /L(0),
which is the proportion of the domain that is initially occupied
by the diffusive population. These relationships are consistent
with our intuitive expectations since we anticipate that larger
D would lead to a reduction in S(t), and that a wider initial
condition would also lead to reduced S(t). However, instead of
relying on intuition or numerical simulation alone, our analysis
is exact and gives us quantitative insight into the interactions
between the diffusivity, domain growth rate, and the details of
the initial condition in terms of the survival probability.

C. Linearly growing domains

For L(t) = L(0) + βt , with β > 0, we have T (t) =
Dt/[L(0)L(t)], and the solution of Eq. (4) is

C(x,t) =
∞∑

n=1

AnL(0)

L(t)
cos

[
λnx

L(t)

]
exp

( − T λ2
n

)
, (13)

where An = 2 sin [λnγ /L(0)] /λn. The survival probability,
Eq. (9), simplifies to

S(t) = L(0)

γ

∞∑
n=1

An

λn

sin(λn)exp
( − T λ2

n

)
. (14)

Again, it is useful to calculate the the long-time survival
probability. Here we have limt→∞ T (t) = D/[L(0)β], and a
leading eigenvalue approximation gives

S ≈ 8L(0)

γπ2
sin

[
πγ

2L(0)

]
exp

[
− Dπ2

4βL(0)

]
, (15)

which shows approximately how the long-time survival proba-
bility depends on the diffusivity, D, the growth rate, β, and the
details of the initial condition, L(0) and γ . Before presenting
specific results from our analysis, we also provide a physical
interpretation of these predictions by implementing a discrete,
stochastic model.

D. Discrete mathematical model

To initiate our stochastic model we consider a one-
dimensional lattice, with unit lattice spacing, of initial length
L(0). Each site is indexed i ∈ [0,L(t)]. The initial condition,
Eq. (5), is represented by initially populating all sites with
x < γ with N � 1 agents and all sites with x � γ with zero
agents. Time is discretized into uniform time steps, each of unit
duration. To advance from time t to t + 1 we use an operator
splitting algorithm by implementing the following two steps
sequentially [29]:

(1) To model the domain growth we specify L(t) and
calculate j = 	L(t + 1) − L(t)
, the nearest integer value

of L(t + 1) − L(t). The domain grows by inserting j new
lattice sites per time step. To insert each new lattice site we
randomly choose an existing site, at location i∗, and translate
each existing site with i > i∗ in the direction of increasing i.
This leaves all existing sites with i � i∗ unchanged and we
insert the new lattice site at location i∗ + 1. We implement
the simplest possible growth mechanism which means that
the newly inserted lattice site, at i∗ + 1, contains zero agents
immediately after insertion.

(2) After j new lattice sites have been randomly inserted,
we allow agents on the lattice to undergo an unbiased random
walk. A random sequential update method is implemented in
the following way. If there are Q(t) agents on the lattice at
time t , we select Q(t) agents, with replacement, at random,
one at a time, and give each agent an opportunity to move with
probability P ∈ [0,1] [30]. Since the random walk is unbiased,
an agent at 0 < i < L(t) will step to i ± 1, with each potential
target site chosen with equal probability of 1/2. Agents located
at i = 0 step to i = 1 with probability 1/2. Any agent that steps
to i = L(t) is removed and Q(t) is adjusted. Since we have
unit lattice spacing and time steps of unit duration we have
D = P/2.

We implement the initial condition, given by Eq. (5), with
the restriction that γ is a positive integer. This gives Nγ agents
on the lattice at t = 0, and we estimate the survival probability
by calculating S(t) = Q(t)/(Nγ ).

III. RESULTS

Continuum and discrete results for an exponentially elon-
gating domain are given in Fig. 1(a). For the exponential
growth case with α = 10−5, we see that S(t) decays with time,
indicating that the domain growth is sufficiently slow that most
of the initial density profile is eventually absorbed at x = L(t).
The comparison between our continuum and discrete results
is excellent, and our long-time approximation of the survival
probability, given by Eq. (12), is S ≈ 0.00, indicating that
approximately 100% of the initial density profile is eventually
absorbed at x = L(t). This is very similar to the nongrowing
case, α = 0, where it is well-known that precisely 100% of
the initial density profile is absorbed at x = L as t → ∞
[25]. A very different result is observed when we have α =
5 × 10−5, where again we have an excellent match between our
theoretical prediction, Eq. (11), and results from the discrete
model. However, in this case we haveS ≈ 0.36, indicating that
approximately 64% of the initial density profile is absorbed at
x = L(t), whereas approximately 36% of the initial density
profile remains on the growing domain as t → ∞. Comparing
our estimate of S ≈ 0.36 with the exact results in Fig. 1(a)
indicates that both our continuum prediction of S(t) and our
discrete simulations match this prediction very closely by
approximately t = 5 × 104. Similarly, for α = 10−4, we have
S ≈ 0.67, which matches both our discrete results and our
continuum prediction very well. Of particular interest are the
results for α = 5 × 10−4, for which our approximation gives
S ≈ 1.0, indicating that the domain growth is sufficiently fast
that the initial density profile is never absorbed at x = L(t).
This result, which is in agreement with Eq. (11) and our
discrete simulations, gives us a straightforward means of
distinguishing between those cases where the domain growth
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t
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FIG. 1. (Color online) Comparison of continuum predictions
(solid blue) and discrete estimates (red dashed) of S(t) for (a)
exponential domain growth L(t) = L(0)eαt , and (b) linear domain
growth L(t) = L(0) + βt . In all cases we have L(0) = 100, and
the initial condition is given by Eq. (5) with γ = 25. Results in
(a) correspond to α = 10−5, 5 × 10−5, 10−4, and 5 × 10−4, with the
arrow showing the direction of increasing α. Results in (b) correspond
to β = 5 × 10−3, 10−2, 5 × 10−2, and 10−1, with the arrow showing
the direction of increasing β. To evaluate the exact continuum
expressions for S(t), given by Eqs. (11) and (14), we truncated the
infinite series after 100 terms and checked that these results were
insensitive to this choice of truncation. To generate the discrete results
we set N = 80 and P = 1, giving D = 1/2.

is sufficiently slow that the density profile reaches x = L(t)
from those cases where the domain growth is sufficiently rapid
that the density profile never reaches x = L(t). Our ability to
distinguish between situations where the initial density profile
is partially or completely absorbed (0 � S < 1) from cases
where the initial density profile is never absorbed (S ≡ 1) is
particularly important in certain processes in developmental
biology, such as ENS development [15,18], and we will elab-
orate more on this in the Discussion and Conclusion section.

Continuum and discrete results for a linearly growing
domain are given in Fig. 1(b). Similar to the exponentially
growing results, we see that the comparison between S(t),
predicted by Eq. (14), and the results from the discrete model
are good. Results are presented for β = 5 × 10−3, 10−2, 5 ×
10−2, and 10−1 and we see that when β is sufficiently small
the survival probability asymptotes to give S > 0, indicating
that a certain proportion of the initial population eventually
reaches x = L(t), whereas the remainder of the population
remains on the growing domain indefinitely. For cases where
β is sufficiently large we have S ≈ 1, indicating that the initial
density profile never reaches x = L(t).

Although all results in Fig. 1 correspond to fixed values
of L(0), γ , and D, we also performed similar comparisons

between our theoretical prediction of S(t) and results from our
discrete model for different choices of L(0), γ , and D. For
all cases considered we observed a similar quality of match
between the theoretical prediction of S(t) and the results from
the discrete model as those presented in Fig. 1.

IV. DISCUSSION AND CONCLUSION

In this work we have presented exact solutions for the
survival probability of a diffusing population on a one-
dimensional growing domain. Our results are significantly
different from previous results in two ways. First, previous
results for similar problems on nongrowing domains have
shown that S(t) decays to zero, exponentially fast, as t →
∞ [25], whereas here we have S(t) > 0 in the long-time
limit. Second, our results are superficially similar to, but
significantly different from previous analyses of survival
probability in expanding cages, receding cliffs [25,31], and
parabolic geometries [32,33]. In these previous studies the
motion of individual agents in the diffusing population is
uncoupled from the expansion of the domain, whereas in
the problems we consider, the motion of individuals in the
population is coupled to the domain growth.

The physical motivation for our analysis is the development
of the ENS [10–14]. This developmental process involves a
population of precursor cells that are initially confined toward
the oral end of the gut. Individual precursor cells undergo an
unbiased random walk [14], which results in a moving front of
precursor cells spreading toward the anal end of the developing
gut. This process is complicated by the fact that the gut
tissues elongate simultaneously as the cell population spreads
along the growing tissues [15,16,20]. Normal development
requires that the moving front of precursor cells reaches the
anal end of the developing tissue. Abnormal development,
which is associated with Hirschsprung’s disease and other
related birth defects [11–13], is thought to occur in situations
where the moving front of cells fails to completely colonize
the growing gut tissue. Developing analytical methods that
can distinguish between complete or incomplete colonization
provides us with information about how the combination
of cell diffusivity, tissue growth, and the initial distribution
of cells controls the outcome of the developmental process.
Our model can be used to distinguish between complete
and incomplete colonization in terms of survival probability
since complete colonization corresponds to S < 1, whereas
incomplete colonization corresponds to S ≡ 1.

We note that our analytical framework for calculating S(t)
is sufficiently general that it can be applied to other uniform
domain growth functions by specifying different forms of
∂v/∂x [or equivalently, by specifying a different form of L(t)
in Eq. (1)]. Further generalizations are also possible. For exam-
ple, although we presented all results using Eq. (5) as the initial
condition, it is straightforward to consider for other initial
conditions by reevaluating the Fourier coefficients in Eq. (8).
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