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Modeling proliferative tissue growth: A general approach and an avian case study
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During development, tissues often undergo rapid physical expansion due to cell proliferation. Continuous
and discrete models of one- and two-dimensional tissue growth are developed and applied to observational data
of the developing avian gut, where the gut tissue cells undergo dramatic proliferation. The discrete cellular
automata model provides results at the level of individual cells that reflect a realistic stochasticity and non-
uniformity expected in cellular systems. Averaging the discrete results predicts population-level properties of
the system, which match those of the continuous model. This dual approach provides an understanding of the
interaction between the individual-level and population-level aspects of a developmental growth process. Both
models are applied to a case study involving the developing intestinal tract of a quail embryo. A nonuniform
growth model accurately predicts the positions of measurable biological landmarks within the growing tissue.
Furthermore, the discrete model provides a framework for modeling the interactions between growing tissues
and other biological mechanisms, such as cell motility and proliferation on an expanding tissue.
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I. INTRODUCTION

Embryogenesis is associated with dramatic morphogen-
esis. Many of these shape-changing processes are very rapid
and are achieved primarily by reorganization of cells in
space. An example of this is convergent extension [1-4],
whereby cell intercalation transforms a short broad tissue to
a narrower longer structure. In many embryos, particularly
anamniotes, this occurs with minimal increase in the volume
of the tissue whose shape is changing. Amniote embryos also
undergo cell reorganization over a short time scale during the
initial phase of morphogenesis. But, having access to an ex-
traembryonic nutrient supply, this is followed, over a long
time scale, by large-scale growth involving cell proliferation
and dramatic expansion of tissue volume.

We are interested in modeling the development of the
enteric nervous system (ENS) in the intestine of amniote
vertebrates, such as birds, rodents, and humans. During the
earliest and rapid stages of intestinal morphogenesis, the gut
sculpts itself to form a tube from wide bilateral flat layers
[5]. After this early stage, ENS development involves a
population of motile and highly proliferative neural crest
(NC) cells invading the gut tissues as a unidirectional wave
[6—8]. During the relatively long time period for NC coloni-
zation, the gut in amniotes undergoes extensive growth in
cell number by proliferation, resulting in massive elongation,
as illustrated in Fig. 1. Restriction of gut cell proliferation
results in a short gut tube [9]. Here we consider this later
phase of growth of the overall gut tube.

Tissue growth may interact with other developmental pro-
cesses. For example, growth may alter the spatial distribution
of cells or morphogens within the developing tissue, thereby
mediating cellular and molecular interactions. This occurs
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during ENS development. In these cases, it can be important
to understand how the tissue growth is coupled to other de-
velopmental processes.

Mathematical models have been developed to investigate
various aspects of embryogenesis and development, such as
pattern formation [10,11] and limb bud development [12,13].
Theoretical mathematical models that couple tissue growth
with other processes have been studied, for example, spa-
tiotemporal pattern formation within expanding domains
[14-19], cell invasion on a growing domain [6,8], and tissue
growth coupled to the movement of morphogens [20]. How-
ever, none of these previous investigations have used obser-
vational data to develop or parametrize the tissue growth
model. To overcome this limitation, we develop a model for
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FIG. 1. Images of quail guts from embryonic age four days to
six days (E4 to E6). The intestinal cell number in the region (small
plus large intestine, excluding the stomach) increases from less than
850 000 at E4 to approximately 2 500 000 at E6 and continues to
increase in number (approximately 4 000 000 at E7). This results in
an increase in cell volume, whereby there is an increase in length
without narrowing, accompanied by radial expansion in some
regions.
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tissue growth due to cell proliferation, parametrized by real
biological growth measurements. Images of developing quail
guts (Fig. 1) are used to describe and parametrize two types
of tissue growth models, one continuous and the other dis-
crete.

The continuous model is conceptually simple, easy to
implement, and can be directly coupled to a continuum
model to describe the motility of cells or morphogens within
the growing tissue [6,8]. In parallel, a discrete stochastic cel-
lular automata (CA) model of tissue growth is also devel-
oped. The CA model provides results at the level of an indi-
vidual cell which reflect realistic stochasticity and
nonuniformity. Analysis of the discrete mechanism connects
the continuum and discrete models. This dual approach pro-
vides insight into the interaction between the individual-level
and population-level aspects of a development process
[21-23].

To motivate our analysis, we consider a growing popula-
tion of cells, with no limitation for resources, which will
form the developing tissue. If the number of cells P grows
through mitotic division, then dP/dt=oP, where o is a con-
stant. If the cell density p is uniform, the number of cells is
related to the tissue geometry P=pV, where V is the volume
of tissue. If the tissue has a regular volume with length X,
width Y, and thickness Z then

V=XYZ v v (1)
A T
Clearly the volume grows exponentially with time, with
V(t)=V(0)e°t. Expanding the temporal derivative in Eq. (1)
gives

1dX 1dY 1dZ_

Xdt Ydt Zzdt
The three terms on the left of Eq. (2) represent (i) the time
rate of change of length per unit length, (ii) the time rate of
change of width per unit width and (iii) the time rate of
change of thickness per unit thickness of the tissue. Assum-
ing each of these components to be constant, denoted by oy,

oy, and o, respectively, the net growth rate o can be written
as the sum of these constant growth rates, namely,

o. (2)

o=o0xtoytoyz 3)
Combined with Eq. (2), this gives
X(t) = X(0)e™,  Y(t) =Y(0)e™, Z(t)=2(0)e"Z. (4)

Therefore, if the number of cells in a uniform density tissue
grows exponentially with time, it is possible for the length,
width, and thickness of the tissue to each grow exponentially
with time. In particular, the volume may grow with a fixed
growth rate o. However, the relative growth rates of the three
orthogonal dimensions of that volume can differ, since there
are infinitely many choices of oy, oy, and o that satisfy Eq.
(3).

This idealization will be useful to characterize observa-
tional data where the dimensions of a growing tissue increase
exponentially with time, as occurs during the development of
the intestinal tract in a quail embryo. As discussed in Sec. IV,
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the gut tissue undergoes large-scale elongation and some ra-
dial growth, with insignificant change in thickness (Fig. 1).
The elongation and radial expansion can both be described
by exponential growth. The growth rates for the case study
can be interpreted in terms of an exponential increase in the
total cell number.

Il. TISSUE GROWTH MODELS

The growth of the developing three-dimensional gut tis-
sues (Fig. 1) is idealized as a series of cylindrical shells
positioned end to end, each with a particular cross-sectional
area normal to the longitudinal axis. The thickening of the
cross-sectional area is small compared to the elongation and
radial expansion, so that the overall growth can be approxi-
mated by the increase in the area of the outer cylindrical
surface. Each cylindrical shell is cut lengthwise, so becom-
ing a flat rectangular plate with a fixed thickness [Z in Eq.
(1)]. Therefore, we need only consider the growth of a rect-
angular region in the Cartesian plane.

Continuous and discrete models of two-dimensional rect-
angular tissue growth will be formulated and analyzed in
detail. To motivate the ideas and methods, we first consider
uniaxial growth, where growth is along one axis only. We
compare the discrete and continuum models and discuss the
statistical distribution arising from the discrete model. Then
we consider biaxial growth, where growth is along both axes.
In Sec. Il these models are modified to represent nonuni-
form elongation. A case study of the development of avian
gut tissues is given in Sec. IV, followed by discussion and
conclusions.

A. Continuum uniform uniaxial growth model

Consider a single growing rectangular piece of tissue of
length 0<x<<X(t) and width 0<y<Y(t). For uniaxial
growth in the x direction, the width remains constant, so we
write Y(t)=Y. The elongation implies that there is a local
velocity u(x,t) such that a point x moves to the point x
+U(x, t)At, during a small time interval At. By considering a
small element Ax of the domain, it can be shown that
[6,8,16,19]

dX (Y au
— = —dx. (5)
da J, ox

For uniform growth the growth rate is independent of posi-
tion [6], and can be written as

M k),

0 < x<X(). (6)
X

Combining Egs. (5) and (6) gives

1dX

S =F(). 7

X dt ) (7
Equation (7) may be interpreted in two ways, namely, (i) if
F(t) is known, the growth of X(t) is defined by Eq. (7), and
alternatively (ii) if X(t) is known, then Eq. (7) determines
F(t). Typically, X(t) is known, since this quantity can be
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FIG. 2. (Color online) Schematic space-time diagram for
uniaxial tissue elongation.

measured. Note that, without loss of generality, we have cho-
sen u(0,t)=0.
If F(t) is a constant, given by oy, then Eq. (7) implies

X(t) = X(0)e’x, (8)

A schematic representation in a space-time diagram is given
in Fig. 2. The time evolution of the position of the trajectory
of a general point xp, where 0<<x,<X(0), is given by

d_x = u(x,t),

& x(0) = Xq. 9)

The local growth rate determines the velocity field as
X au
ux,t)= | —dé=oyx. 10
(x1) fo Py &= oy (10)

Hence the evolving path of such a point is
X(t) = x,e”x, (11)

Equation (11) gives the continuum paths of any point within
the tissue.

B. Cellular automata uniaxial growth model

Uniaxial elongation of a two-dimensional tissue will now
be simulated with a discrete CA model. The model is devel-
oped on a rectangular lattice in the x-y plane. Since we are
considering elongation only at this stage, the lattice width Y
remains constant while the lattice length is variable. A single
cell or group of neighboring cells in the tissue is idealized as
a unit square agent on the lattice. This allows us to model the
tissue elongation on a variety of scales. A discrete point
within the lattice is represented with the coordinates (x,y),
which denotes the top right-hand corner of a unit square
agent. The origin is located in the lower left-hand corner of
the lattice. An agent is represented by a circle whose center is
positioned at the top right-hand corner of the square agent.
The initial length of the lattice X(0) is a positive integer.

The length of the lattice increases according to the prolif-
eration mechanism illustrated in Fig. 3(a). If an agent at
(x,y) proliferates, the original agent moves to (x+1,y), and a
new (yellow) agent is inserted at (x,y). All agents to the right
of (x,y) move one unit in the positive x direction. There is no
movement in the y direction; hence the rows in the lattice are
independent. By considering several adjacent rows, this one-
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FIG. 3. (Color online) Cellular automata model and paths deter-
mined by the continuum model. (a) CA proliferation mechanism. In
(b)-(d) the values of the parameters for the initial length and the
growth rate are X(0)=16 and ox=0.41. (b) Columns of agents with
the same color at t=0 will be tracked for t>0, Y=25. The black
column is the end of the tissue. (c) Positions of tracked agents at
t=3. (d) Space-time diagram of the paths (solid curves) from the
continuum model and the average values (markers) p(X,,t) from
N=10 simulations of the CA model.

dimensional mechanism can be used to represent the uniaxial
elongation of a two-dimensional tissue with constant width
[Fig. 3(b)].

Consider an agent initially at position (Xg,Y,). Here, Xg
and y, are positive integers, such that 1<x;<X(0) and
1=<y,<Y. We are interested in tracking the position of this
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agent at later times. To this end, for the jth realization of a
simulation, we define p;(xo,Yo,t) as its horizontal position.
By definition, at t=0, each colored column in Fig. 3(b) has
P;j(Xo,Yo,0)=Xo, for all rows y,. Figure 3(a) shows the effect
of the proliferation rule on the position of an (blue) agent
being tracked.

The length of the lattice is increased at the same rate as
the continuum model. Equation (8) shows that the increase in
the length X(t) from time t to t+1 in the continuum model is
X(t)(e?x=1). For a single time step of the CA algorithm, n
agents in each row are chosen to proliferate at randomly
selected positions. Here, n is the nearest integer value or
“round” of p;(X(0),Yy,,t)(e”x~1). The n new agents are in-
serted to the left of the chosen agents, as described in Fig.
3(a). When a new agent is inserted, the position of
P;(X(0),Yo,t) is updated before the next insertion.

Figure 3(c) illustrates a single simulation with the initial
condition given in Fig. 3(b). The position of the black col-
umn at t=3 in Fig. 3(c) is p;(16,yy,3)=54, which is the
same as the continuum result. Other choices of X(0), oy, and
t may give slightly different continuum and CA results due to
integer rounding.

To determine the length of the elongating tissue we only
need consider a single row of the lattice. The length is pre-
determined by n. In contrast, the position of other tracked
agents within the tissue [e.g., blue, green, red, light blue, and
pink agents in Fig. 3(c)] is stochastic. Therefore the CA
model always predicts the same rate of tissue elongation as
the continuum model. However, the CA model provides ad-
ditional important individual-level data regarding the de-
tailed movements within the tissue. These individual data are
stochastic and mimic the interesting nonuniformity and ran-
domness expected in biological processes. This variability
will now be analyzed.

C. Statistical analysis

For N realizations of a simulation, we define the average
horizontal position of agents located initially at p;(Xy,Yo,0)

=X, as

E 2 Pi (X0, Yo.t). (12)

11YO

It is worthwhile to note that p(X(0),t)=p;(X(0),Yo,1), since
Pj(X(0),Yo,1) is independent of y,, and represents the dis-
crete version of X(t).

The time evolution of various points in the tissue is illus-
trated in Fig. 3(d). The solid curves show the continuum
paths for various Xx,. The data points are the average posi-
tions from the N=10 realizations of the simulation, given by
p(Xg,t). The agreement between the CA and continuum
model is excellent. Qualitatively similar results are obtained
for different X(0) and ox. This is an important outcome.
While the CA model was designed to exactly replicate the
total length predicted by the continuum model, it is not ob-
vious that the average CA model predictions would match
the corresponding continuum results. Indeed, for a single
simulation [Fig. 3(c)] the spatial distribution of the tracked

PlXp,t) =
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agents is nonuniform because of its inherent stochasticity.
This result is analyzed further by considering the probability
distribution associated with our CA rules.

From the CA data we also determine the standard devia-
tion

S(xo,t) = \/NY 12 E [P;(X0, Yo, 1) = P, ) (13)

j=1yp=1

and skewness

N Y
E 2 [p](XOIyOIt)_H(XO1t)]3

k(Xg,t) =
° S( t)3 YJ:l yo=1

(14)

At positions x=0 and x=p;(X(0), Yo, t) the standard deviation
is zero and the skewness is infinite.

The CA statistics are related to the Pdlya-Eggenberger
distribution, also known as the Pélya distribution [24]. When
formulated in 1923, the distribution was expressed in terms
of random drawings of colored balls from an urn [24]. In
terms of our variables, initially there are x, white balls and
X(0) —xq black balls. One ball is drawn at random, and then
replaced along with r balls of identical color. If this is re-
peated M times, and K represents the total number of times a
white ball is drawn, then the distribution of K is the Polya
distribution with parameters M, xp, X(0)=X,, and r.

Here we show how our discrete model can be described in
terms of a Polya distribution. Consider a single row in the
lattice of the CA model. Initially there are X(0) agents in the
row. Consider the position of an agent initially at X, where
xo=1,...,X(0). We track the position of this agent given by
Pj(Xo,Yo,t). Now K is the total number of times an agent to
the left of, and including, p;(Xo, Yo, 1t) is chosen to proliferate.
Since proliferation involves the insertion of another agent to
the left of the chosen agent, as illustrated in Fig. 3(a), K is a
Pdlya distribution, with r=1.

The probability that k agents are chosen to the left of, and
including, p;(Xo,Yo.t) for M(t)=p;(X(0),Yy,,t)—X(0) random
choices of agents is

M-k-1
" e sia 11 @+

Pr(K =k,M)= —— = . (15)
IT a+ia
i=0
where
X g X o T
P_X(O)' Q=1 X(0)’ X(0)" (10

We have chosen to keep r general here. Although our interest
will be for the case r=1, further comments on relevant pa-
rameter values will be made.

The mean, variance, and skewness are

1+Ma) _(1-2P)(1+2Ma)
1+a) ' o(l+2a)

w=MP, £=MPQ

(17)
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k*=2(1-2x*)/s*

FIG. 4. (Color online) Descriptive statistics
for the CA model. Data points represent results
for 12 combinations of the parameters oy
={0.22,0.41}, X(0)={16,24}, and t={1,2,3}.
N=200. (a) s* versus x;. (b) k* versus x;. Solid
lines are the theoretical results.

To illustrate the relationship between the simulation data
and Pélya distribution, we rescale the variables as

. % o 481+ a) . 2ks(1+2a)

%Tx0r ° TMA+Ma) s(1+2Ma)’
(18)
Substituting (18) into (17) gives
2(1-2x7
S*=\ax (1-X), k= % (19)

Plots of s* and k* are given in Fig. 4. The statistics for the
scaled CA data are illustrated for various X(0), oy, and t. We
observe that the scaled standard deviation and skewness
given by the Pélya distribution (19) give an excellent fit to
all the data. As the number of simulations N increases, the
goodness of fit increases.

Variations in the CA mechanism can be related to differ-
ent values of r. We describe some examples. (i) Integer val-
ues of r >1 correspond to multiple agents being inserted into
a row of the lattice. This is unrealistic for our application
since each agent divides into two daughter agents only. (ii) If
only the initial X(0) agents are allowed to proliferate, by
mitotic division, then this corresponds to r=0, giving the
binomial distribution. Again this is unrealistic in the biologi-
cal problem under consideration, since daughter agents are
also proliferative. (iii) If we change our CA proliferation
mechanism to allow only the mitotic division of agents that
are generated at previous time steps, then we find that the
CA statistics match those of the Polya distribution for a non-
integer value of r such that 0<<r <1. This mechanism pre-
vents daughter agents born within a time step from prolifer-
ating during that time step. (iv) The case r <0, provided
X(0)+r(M=1)>0 [24], also gives a valid Pélya distribution
that corresponds to agent death.

For the mitotic division of agents and 0<r <1, the mean
position of the tracked agents is given by

P(Xo,t) =X + . (20)

In Fig. 3(d), the colored markers represent these positions for
our model where r=1, while the solid lines represent the
continuum paths given by Eq. (11).

To summarize, our CA model can be described by a Pdlya

distribution. In particular, the sample mean p(xg,t) approxi-
mates paths given by the continuum model and is related to

the mean of the Pdélya distribution. The scaled CA standard
deviation and skewness are given by the Pélya distribution,
illustrated in Fig. 4.

D. Uniform biaxial growth model

Consider now a rectangular piece of tissue that grows
along both axes, where the length is 0<x<<X(t), and the
width is 0 <y<Y(t). A sketch of the growth is illustrated in
Fig. 5(a). If the growth is uniform, then the induced local
velocity is v=u(x,t)X+v(y,t)y, where

dy Y(t)
—= @dy. (21)

dX XYy
ax _ Mix. _
X da ~ J, oy

da  J,
For uniform growth, the growth rate is independent of posi-
tion [6,25]:

u v _
&-F(t), 0 < x < X(1), ay_G(t)’ 0<y<Y().

(22)
Combining Egs. (21) and (22) gives
1dX 1dy
——=F ——= . 2
X dt (v, Yt G(t) (23)

Note that, without loss of generality, we have chosen
u(0,t)=v(0,t)=0.

The time evolution of a point (Xg,Y,) in the rectangular
domain can be determined using

X uxd, Y=o,

pm a y(0) = ¥o.

X(0) = X,
(24)

The local growth rate determines the velocity field as
*ou )
u(xt) = f —d& u(yt)= f —-dé. (25)
0 9§ 23

For constant growth rates oy and o, respectively, then

y(t) = yoe™'. (26)

To illustrate biaxial growth, a growth rate in each direc-
tion must be specified. Instead of using a constant growth
rate, as done in Sec. Il A, we present results for logistic
growth in the x direction and linear growth in the y direction.
We choose the length and width of the tissue to evolve as

X(t) = xpe™,
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FIG. 5. (Color online) Biaxial tissue growth. (a) Schematic of
biaxial growth. (b)-(g) Growth in the x direction is logistic with
a=0.70 and K=20, while growth in the y direction is linear with
B=1, X(0)=Y(0)=10. (b) Columns of agents to be tracked in the x
direction. (c) Positions of tracked agents marked in (b) at t=10. (d)
Space-time diagram of the paths (solid curves) from the continuum
model and the average values (markers) p(Xy,t) from N=25 simu-
lations of the CA model. (e) Rows of agents to be tracked in the y
direction. (f) Positions of tracked agents marked in (e) at t=10. (g)
Space-time diagram of the paths (solid curves) from the continuum
model and the average values (markers) q(yo,t) from N=25 simu-
lations of the CA model.

~ X(0)K
"~ X(0) + [K - X(0)]e™’

X(t) Y(®)=Y(00)+pt, (27)

with the corresponding growth rates, Eq. (23), given by

Y (U] __B
F(t)—a(l K), G(t)—Y(t). (28)

The time evolution of the coordinates of a trajectory starting
at (Xg,Yo) within the tissue is given by
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20
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FIG. 6. (Color online) Trajectories from the continuum model of
selected initial positions on a biaxially growing tissue with X(0)
=Y(0)=10. Growth in the x direction is logistic with «=0.70 and
K=20, while growth in the y direction is linear with B=1. Green
markers represent the selected initial positions (Xq,Yp). The red

markers are the evolved positions (x,y) at t=10 of the green
markers.

X(t) =g y(t) :y0<1 + ﬂ),

Y(0)
(29)

K
X(0) + [K - X(0)]e™"’

respectively. Equation (29) gives the continuum paths for
uniform biaxial growth.

We extend the CA model to include biaxial growth. The
mechanism that increases the width of the lattice is similar to
the rule for uniaxial growth [Fig. 3(a)]. For a single time step
of the CA algorithm, n agents in each row and m agents in
each column are chosen to proliferate. There are a number of
ways to choose the order in which the new agents are in-
serted into either the rows or columns. For example, the row
insertions can all be made first followed by the column in-
sertions, or vice versa. Another way is to alternate between
each of the row and column insertions. These three methods
(and others) gave similar results.

For biaxial growth we track agents in both dimensions.
Let pj(Xo,Yo.t) and q;(Xo, Yo, t) be the horizontal and vertical
positions of an agent initially at position (xg,Yp), so that
P;j(Xo, Yo, 0) =Xo and ;(Xo, Yo, 0) =Yo. Analagous to the defini-
tion of p(xg,t) in Eq. (12), we define the average vertical
position of an agent over N realizations of a simulation as

1 N X(0)
qlyo.t) = Wonzl XOE:l 0;(X0, Yo - (30)

Similarly to uniaxial growth, q(Y(0),t)=q;(xo, Y(0),1), since
0j(Xo, Y(0),t) is independent of x,, and represents the dis-
crete version of Y(t). The standard deviation and skewness of
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FIG. 7. (Color online) Nonuniform uniaxial growth. (a) Sche-
matic space-time diagram of the continuum growth model with M
=3. In (b)-(d) the values of the parameters for the initial positions of
the biological landmarks and the growth rates are X;(0)=8, X5(0)
=12, X3(0)=16, 04=0,=0.41, and 03=0.22. (b) Columns of agents
of the same color at t=0 to be tracked for t>0, Y=25. The black
columns represent the landmarks. (c) Positions of tracked agents at
t=3. (d) Space-time diagram of the paths (solid curves) from the
continuum model and the average values (markers) p(xg,t) from
N=10 simulations of the CA model.
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the CA data for agents being tracked in the y direction are
calculated using equations analogous to Egs. (13) and (14).

Results for the biaxial growth are given in Fig. 5 and 6.
As for the previous uniaxial results, the length, width, and
average horizontal and vertical positions, p(xy,t) and q(y,,1),
within the growing tissue predicted by the CA model, coin-
cide with the continuum results (Fig. 5). The trajectories
from the continuum model in the Cartesian plane are shown
in Fig. 6 for a selection of initial positions (Xg,Yy) on a bi-
axially growing tissue. The trajectories in Fig. 6 are for the
same values of the parameters as the space-time diagrams of
Fig. 5.

We further analyzed the statistics of the CA data for biax-
ial growth. Because of the independence of the growth along
each axis, the scaled standard deviation and skewness for
both dimensions also collapse onto the curves in Fig. 4.

I11. NONUNIFORM UNIAXIAL GROWTH MODEL

In certain applications, the assumption of uniform
uniaxial growth may be invalid. The continuum and CA
models can be adapted to model nonuniform uniaxial growth
by representing the tissue as a series of piecewise uniformly
growing subsections. Suppose X;, for i=0,1,...,M, are the
positions of M+1 landmarks along a growing tissue. Obser-
vational data can describe the evolution of these positions
with time t, so that X;(t) is given at discrete times. Without
loss of generality, we choose X,(t)=0 for all time. The total
length of the tissue is Xy (t). A schematic diagram of nonuni-
form uniaxial growth is shown in Fig. 7(a) with different
constant growth rates a;, for i=1,...,M, in each subsection.

If tissue growth between adjacent landmarks X; and X;_;
is uniform with constant growth rate o, then

% =gy, X)) <x<X(1), (31)
and
1 d
X — X, dt (Xi = Xi-1) = a5 (32)

Hence, each subsection of tissue grows exponentially as

STOMACH

UMBILICUS CECUM

CLOACA

L
X 2 x

1
Midgut 1 Midgut 2 Hindgut

<>
1 mm
FIG. 8. (Color online) Image of an E6 quail embryo illustrating

the landmarks along the gut and nomenclature used to describe the
growth dynamics.
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FIG. 9. (Color online) Measurements of the gut for age E4 to E14. The error bars are for the standard error s/ . (a) Arclength of gut
sections and total arclength. (b) Diameter of the gut measured at the landmarks.

Xi(t) = Xi-q (1) = [Xi(0) = Xi-1(0) Je”. (33)

The position of each landmark in a series of uniformly grow-
ing subsections of tissue is given by

Xi(t) = 2 [X(0) = X;-1(0) e, (34)
j=1

Now the local growth rate determines the velocity field as

u(xt) = f z_l;dfz alx= X1+ X o[ X0 = X1 (D],
0 j=1
(35)

for X;_;(t) <x<X;(t). Combining Egs. (9) and (35) gives the
evolving path of a point initially at x; as

X(1) = [o = Xi(0) ] + X [X;(0) - X;1(0)]e”",  (36)
j=1

for X;_1(t) <x<Xi(t). In summary, we have described how to
model a nonuniformly growing tissue using a series of piece-
wise uniform subsections of tissue [18]. In the case that all
the growth rates o; are equal, then the model relaxes to a
uniform uniaxial growth model.

For the jth realization of the CA model, the length of the
lattice is increased at different rates in the subsections
P;j(Xi-1(0), Yo, t) <x<p;(X(0),yo,t) for i=1,...,M. Each
landmark must remain at the same position in each row of
the lattice. Equation (33) shows that the increase in the
length X;(t)—X;_41(t) from time t to t+1 in the continuum
model is [X(t)—=X_;(t)](e’i=1). Therefore, we define n
as the nearest integer value or ‘round’ of
[(p;(Xi(0),Y0,t) = pj(Xi-1(0), Yo, 1) ](€7=1). In each time step
of the CA model, n agents in each row proliferate at random
positions between the two landmarks and n new agents are
inserted, as described in Fig. 3(a). When a new agent is
inserted, the position of the right-hand landmark is updated.
The positions of the two landmarks at the beginning of the
time step are pj(X;-1(0),Yo,t) and p;(X;(0), Yo, 1), and the po-
sitions of the two landmarks at the end of the time step are
P;j(Xi-1(0),Yo,t+1) and p;(X(0),Yo,t+1)=p;(Xi-1(0),yo,t
+1) = pj(Xi-1(0), Yo, ) +p;(Xi(0), Yo, ) + .

Figure 7(c) shows a typical CA simulation with three sub-
sections for the initial condition in Fig. 7(b). The average
position of the tracked agents agree with the continuum paths
in Fig. 7(d). Scaled CA data of the standard deviation and
skewness for each subsection also collapse onto the curves in
Fig. 4.

The nonuniformity in the continuum model and average
horizontal position of the tracked agents in the CA model are
shown in Fig. 7(d). Because of the lower growth rate in the
third subsection, the spacings between the paths in that sub-
section are narrower than in the first two subsections. In Sec.
IV we demonstrate that it is necessary to use a nonuniform
uniaxial growth model to accurately predict the position of
landmarks along the developing quail gut.

IV. CASE STUDY: NONUNIFORM GUT LENGTH
ELONGATION

The continuum and CA uniaxial growth models will now
be applied to elongation data for the developing intestinal
tract of a quail embryo.

A. Observational data

The morphology of a developing quail gut is shown in
Fig. 8. Four biological landmarks are identified along the
gut, namely, (i) the stomach, (ii) the umbilicus, (iii) the
cecum, and (iv) the cloaca. The landmarks are denoted X;,
where the stomach is fixed at X,(t) =0 and the cloaca is X;(t).
The subsections between these landmarks are called midgut
1, midgut 2, and hindgut, respectively [7]. The arclength and
diameter of each subsection were measured between embry-
onic age 4 days (E4) and E14 and are shown in Fig. 9. The
growth of each subsection of tissue shows similar trends.

First we consider the elongation of the tissue. From E4 to
E11, the length of each subsection increases exponentially

TABLE I. Elongation and thickening growth rates in the gut.

Growth rates Midgut 1 Midgut 2 Hindgut
oy 0.44 0.44 0.27
oy 0.08 0.13 0.23
o= oyt oy 0.52 0.57 0.50
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FIG. 10. (Color online) Relative lengths L; (triangles) and widths W; (circles) for the three gut subsections with t=t*-4. (a) Midgut 1:
ox=0.44, 0=0.08. (b) Midgut 2: oyx=0.44, ov=0.13. (c) Hindgut: ox=0.27, o=0.23.

and at later times the rate of increase slows so that the
growth profile resembles part of a logistic curve. The growth
data are of interest because it is an important mechanism that
influences NC cell migration during development of the
ENS. During normal development NC cells colonize the en-
tire gut by E8 [26]. Therefore, we need only focus upon the
exponential part up to this age. However, since the exponen-
tial growth lasts up to E11, we will model the exponential
gut growth over this period of seven days.

There is some radial expansion of the gut as seen in Fig.
9(b). The diameters can also be described by an exponential
growth model.

To assess any spatial variability in the growth rates, we
evaluate the relative elongation and radial expansion in each
subsection. Again considering each cylindrical shell as a
rectangle with a fixed thickness, we can describe the relative
lengths L; and relative widths W, as

_ Xi(t) = Xi—1(t)
b Xi(0) = Xi-4(0)

_ bi®

W =
W=D 0

(37)

of the ith subsection. This data is illustrated in Fig. 10. The
increase in the relative length of the subsections with time
shows that there is very little difference in the elongation of
midgut 1 and midgut 2, whereas the hindgut elongates at a
reduced rate. Different rates of elongation in the three sub-
sections give an excellent fit to the data [Figs. 10(a) and
10(b)] and imply that the overall growth rate is nonuniform
along the gut tissue.

The relative elongation in length and radial expansion are
different in the different regions of the gut. For example, in
midgut 1 and midgut 2, the radial growth is negligible com-

16

pared to the elongation. However, in the hindgut the two
growth rates are similar and therefore the growth is nearly
isotropic.

In summary, each subsection of tissue grows exponen-
tially in length X and width Y while the thickness Z of the
tissue remains constant. For each subsection, growth rates oy
and o can be determined (with o,=0). Arguments outlined
in Sec. | indicate that the sum of these growth rates ought to
be a constant in all subsections of the tissue. Data in Table |
shows that the total growth rate o=oy+ o iS approximately
constant in all subsections. This is consistent with the as-
sumption that the cell numbers are increasing exponentially
in number, giving rise to an exponentially growing volume.
However, here, for example, the midgut regions are growing
anisotropically, whereas the growth is almost isotropic in the
hindgut. These data support the arguments outlined in Sec. |
and provide a potential explanation of how midgut 1 and
midgut 2 elongate much more than the hindgut, even though
these subsections are composed of the same cells which pre-
sumably proliferate at the same rate. The mismatch is ex-
plained by the hindgut radially expanding far more than mid-
gut 1 and midgut 2.

Tables 11 and 11l in the Appendix give details of the ar-
clength and diameter measurements. For completeness we
also include a short analysis of data describing the increase
in the length of the cecum or cecal lobe [Fig. 11(a)]. Mea-
surements were made from E5.5, as prior to this time the
length of the cecal lobe is too small to measure. Its relative
length [Fig. 11(b)] was found to grow exponentially versus
t=t*-55.

B. Comparison of models and observational data

For simplicity, we focus on gut elongation. This is more
important since NC cells must invade down the whole ex-

12
Length

(mm)

FIG. 11. (Color online) Cecal
lobe growth data from Table III.
(a) Arclength. The error bars are
for the standard error s/yn. (b)
Relative length (circles). The solid
curve is for an exponential growth
model, growth rate o¢=0.41.

12
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FIG. 12. (Color online) Scaled data from Table Il (triangles). (a) Umbilicus. (b) Cecum. (c) Cloaca. Nonuniform CA model (circles),
nonuniform continuum model (solid curves), and uniform continuum model (broken curves). Initial values for the landmarks and growth
rates used in the models are X;(0)/X5(0)=0.50, X5(0)/X5(0)=0.76, X3(0)/X5(0)=1.00, 01=0.44, 0,=0.44, 03=0.27, and o =0.41.

panding length of the gut to ensure normal development
[26].

To assess the effectiveness of the continuum and CA mod-
els at predicting the positions of the biological landmarks,
the observational data are rescaled. From the original data
the rescaled positions X;(t)/X3(0) of the landmarks, at time
t=t*-4, are given in Fig. 12.

Using the estimates for the growth rates o =0,=0.44 and

Growing

20

10

03=0.27 in the three subsections [Figs. 10(a)-10(c)], Eq.
(34) gives the evolution in time of the landmarks for the
continuum model. Appropriately chosen integer values for
the initial positions of the landmarks and growth rates were
used to match the position of the landmarks with the CA
model. Figure 12 shows that the continuum and CA results
are indistinguishable and compare well with the observa-
tional data, as expected.

Non-growing

20

10

20

10

60 ‘ 0 20

FIG. 13. (Color online) NC cell invasion on a growing (o;=0,=0.41, 03=0.22) and a nongrowing tissue, X;(0)=8, X,(0)=12, and
X3(0)=16. (a) Number n=200 of NC agents (blue) at t=0. (b) Growing tissue (n=272) and nongrowing tissue (n=203) at t=2. (c) Growing

tissue (n=501) and nongrowing tissue (N=227) at t=4.
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We emphasize the importance of using a nonuniform
elongation model. Results from a uniform growth elongation
model with a single constant growth rate o =0.41 for the
entire length of gut are compared with the nonuniform model
and observational data (Fig. 12). The uniform uniaxial model
accurately predicts the position of the cloaca, but underesti-
mates the positions of the umbilicus and the cecum [Figs.
12(a) and 12(b)]. Therefore the nonuniform elongation
model is necessary to simulate the dynamics of the landmark
positions.

V. DISCUSSION AND CONCLUSIONS

We have developed a discrete and a continuous model to
describe tissue growth. The models can be applied to repre-
sent uniaxial tissue elongation or biaxial expansion. Both
models have the flexibility to be applied to a single region of
tissue undergoing uniform growth, or to represent a nonuni-
formly elongating tissue as a series of piecewise uniform
subsections of tissue.

The discrete model is designed so that the increase in
length and width of each subsection is equivalent to the con-
tinuum model. Our simulations and analysis show that the
average position of any point within the tissue predicted by
the CA algorithm coincides with the continuum model. This
is a unique feature since the discrete model predicts the same
average properties as the continuum model while also pro-
viding additional insight into growth process at a level that is
unresolved by the continuum model. The individual-level be-
havior and stochasticity of the CA model reflect real biologi-
cal behaviors.

Our CA tissue growth model provides an additional appli-
cation for the Pdlya distribution. The distribution also ap-
pears in models of nuclear fragmentation and clustering, ge-
netic diversity, the social behavior of monkeys, and the
group behavior of people [27-29].

Using observational data for the development of the avian
gut, we showed that a nonuniform model is required to pre-
dict the location of measurable landmarks. While the obser-
vational data indicated that the increase in length and width
of the developing gut were nonuniform, the increase in
length was much more pronounced than the increase in width
along most sections of the developing tissue. Therefore we
chose to represent the developing gut as a series of three
elongating sections of tissue and ignored the increase in di-
ameter.

The CA model provides a framework for modeling a
growing tissue coupled with other biological mechanisms.
One such system is the NC cell invasion along the develop-
ing gut [30,31]. Typically NC cells invade the thick intestinal
mesenchymal cell mass, but are restricted to a narrow layer,
as on the surface of a cylinder. This two-dimensional format
is particularly amenable to our CA model. Simulations of NC
cell invasion on an elongating tissue are presented in Fig. 13
and are compared to an equivalent simulation on a nongrow-
ing tissue. Neighbor-excluded motility and proliferation
mechanisms for the NC agents similar to those described by
Simpson et al. [32] are used to represent NC cell behavior.
Identical NC motility and proliferation rates were used in the
growing and nongrowing tissue simulations.

PHYSICAL REVIEW E 78, 031912 (2008)
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FIG. 14. (Color online) NC cell invasion on a growing (o
=0.22, 0y=0.10) and a nongrowing tissue, X(0)=Y(0)=20. (a)
Number n=100 of NC agents (blue) at t=0. (b) Growing tissue
(n=139) and nongrowing tissue (n=110) at t=2. (c) Growing tissue
(n=254) and nongrowing tissue (n=130) at t=4.

Several observations can be made from the simulations in
Fig. 13. At the later times shown, there is a larger number of
NC agents on the growing tissue than the nongrowing tissue.
This arises because the expanding tissue provides extra space
for NC agent proliferation. Moreover, the NC cell invasion
along the gut toward the anal (cloaca) end is more advanced,
relative to the position of the cloaca on the nongrowing tis-
sue.

To further generalize these observations, simulations of
motility and proliferation on a biaxially growing tissue, with
anisotropic exponential growth in both the length and width,
are given in Fig. 14. Similarly to the uniaxial results, there
are more cells on the growing tissue than an the nongrowing
tissue at later times, and the distance along the growing tis-
sue relative to the length and width of the tissue is more
advanced in the nongrowing case.

In summary, these simulations illustrate complex interac-
tions between NC cell motility and proliferation and the
growth of the underlying tissue. These interactions deter-
mine, in part, the ability of the NC cell population to colo-
nize the growing gut tissues.

Our approach is not limited to developmental biology ap-
plications. This work provides a useful and promising frame-
work for studying complex interactions between growing do-
mains in general and the transport and reaction of materials
on that domain, for example in material swelling associated
with solute migration [33,34].
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TABLE II. Average lengths of the gut taken at time t* (days). Measurements in mm, variance %, and

sample size n.

t* n X3 & X & X=X & Xg— X, &
4.0 19 3.7 0.06 1.9 0.03 0.96 0.01 0.90 0.01
4.5 14 4.6 0.05 2.3 0.03 1.07 0.01 1.12 0.02
5.0 28 4.5 0.13 2.3 0.05 1.03 0.04 111 0.01
55 12 6.3 0.26 33 0.08 1.47 0.03 1.50 0.01
6.0 21 9.8 0.56 5.3 0.23 2.27 0.05 2.23 0.03
6.5 13 12.4 1.02 6.6 0.41 3.27 0.19 2.54 0.06
7.0 15 14.3 1.09 7.6 0.61 4.02 0.15 2.64 0.10
7.5 14 19.2 0.90 10.9 0.28 5.22 0.42 3.12 0.06
8.0 17 20.9 2.33 11.6 1.14 6.01 0.41 3.19 0.10
9.0 14 29.2 9.98 16.8 3.62 8.83 1.44 3.63 0.12
10.0 15 40.7 7.96 24.1 4.43 12.04 0.75 4.61 0.14
11.0 15 60.7 40.54 37.1 19.34 18.42 6.01 6.32 0.30
12.0 8 72.1 18.80 433 7.61 21.40 3.02 7.47 0.75
13.0 8 79.6 22.46 45.0 5.02 24.65 7.60 8.75 1.53
14.0 8 86.0 72.80 49.6 31.63 28.24 9.22 9.73 9.85
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APPENDIX: OBSERVATIONAL DATA

Tables 11 and I11 give the observational data for the length
and width data, respectively. Table Il gives the lengths of the
three subsections and total length of the gut. Table Il gives
the diameter D; of the gut at three of the landmarks and the
length of the cecal lobe C.

TABLE I1l. Average diameter D; at three of the landmarks and length of the cecal lobe C taken at time t*
(days). Measurements in mm, variance s?, and sample size n.

t* n Ds & D, & D, & c &
4.0 21 0.36 0.002 0.32 0.000 0.36 0.004

45 14 0.44 0.004 0.37 0.001 0.40 0.003

5.0 28 0.37 0.002 0.32 0.001 0.28 0.001

55 12 0.43 0.003 0.32 0.001 0.27 0.001 0.68 0.004
6.0 21 0.67 0.014 0.45 0.002 0.34 0.002 1.19 0.013
6.5 13 0.67 0.006 0.49 0.003 0.35 0.001 1.68 0.060
7.0 15 0.87 0.015 0.57 0.003 0.38 0.001 1.86 0.037
7.5 14 1.08 0.025 0.60 0.003 0.38 0.002 2.42 0.055
8.0 17 0.99 0.013 0.58 0.002 0.40 0.002 2.79 0.048
9.0 14 1.13 0.036 0.61 0.001 0.43 0.002 3.84 0.168
10.0 15 1.42 0.030 0.66 0.002 0.49 0.003 5.30 0.217
11.0 15 1.70 0.043 0.78 0.004 0.55 0.005 8.39 0.887
12.0 8 2.00 0.050 0.87 0.011 0.63 0.004 10.26 0.959
13.0 8 2.17 0.146 0.98 0.018 0.77 0.018 11.00 0.617
14.0 8 2.79 0.222 1.22 0.027 0.98 0.031 14.40 4.334
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