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� Scratch assays with different initial cell densities are performed.

� Rate of re-colonisation is very sensitive to the initial density.
� Calibrating the Fisher Kolmogorov model implies that the cell diffusivity, D, & proliferation rate λ, appear to depend on initial density.
� Calibrating the Porous Fisher model suggests a reduced dependence of D & λ on the initial density.
� In general, our approach suggests that the Porous Fisher model is better suited to our experiments than the Fisher Kolmogorov model.
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Scratch assays are difficult to reproduce. Here we identify a previously overlooked source of variability
which could partially explain this difficulty. We analyse a suite of scratch assays in which we vary the
initial degree of confluence (initial cell density). Our results indicate that the rate of re-colonisation is
very sensitive to the initial density. To quantify the relative roles of cell migration and proliferation, we
calibrate the solution of the Fisher–Kolmogorov model to cell density profiles to provide estimates of the
cell diffusivity, D, and the cell proliferation rate, λ. This procedure indicates that the estimates of D and λ
are very sensitive to the initial density. This dependence suggests that the Fisher–Kolmogorov model
does not accurately represent the details of the collective cell spreading process, since this model
assumes that D and λ are constants that ought to be independent of the initial density. Since higher initial
cell density leads to enhanced spreading, we also calibrate the solution of the Porous–Fisher model to the
data as this model assumes that the cell flux is an increasing function of the cell density. Estimates of D
and λ associated with the Porous–Fisher model are less sensitive to the initial density, suggesting that the
Porous–Fisher model provides a better description of the experiments.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Two-dimensional in vitro cell migration assays are routinely
used to investigate the ability of cell populations to re-colonise an
initially-vacant region. The most common type of in vitro cell
migration assay is called a scratch assay, which is performed by:
(i) growing a cell monolayer; (ii) removing a region of the
monolayer by scratching it with a sharp-tipped instrument; and
(iii) making observations of the re-colonisation of the initially-
vacant, scratched region (Ashby and Zijlstra, 2012; Kramer
þ617 3138 2310.
.J. Simpson).
et al., 2013). Comparing the rate of scratch closure in an experi-
ment where cells are exposed to a chemical stimulus to the rate of
closure in a control assay provides insight into the roles of growth
factors and putative drug treatments relevant to malignant
spreading and tissue repair (Ashby and Zijlstra, 2012; Kramer
et al., 2013).

Although scratch assays remain popular, various alternative
in vitro assays have been proposed. These alternatives, including
circular barrier assays (Vo et al., 2015), circular invasion assays
(Kam et al., 2008) and IncuCyte ZOOM™ assays (EssenBioScience,
2015), are often claimed to be superior because of issues asso-
ciated with scratch assay reproducibility (Gough et al., 2011). The
purpose of these alternative assays is to reduce some source of
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variability in the experimental design. For example, standard
scratch assays can be performed with various types of instruments
(e.g. pipette tip, and razor blade) and with varying degrees of
pressure. Each of these variables is thought to have the potential to
affect the results in some way. To address these limitations, the
IncuCyte ZOOM™ real time live cell imaging assays have been
developed (EssenBioScience, 2015). IncuCyte ZOOM™ assays use a
mechanical tool, called a WoundMaker™, to create 96 identically-
sized scratches in each well of a 96-well tissue culture plate. Each
WoundMaker™ scratch has the same dimensions, and is created
with the same amount of pressure.

In this work we explore a previously overlooked source of
variability that has the potential to impact the interpretation of
various types of cell migration assays. While standard experi-
mental procedures for many cell migration assays require that a
sufficient amount of time is allowed for the population to become
confluent before the experiment is initiated (Ashby and Zijlstra,
2012; Kramer et al., 2013), most experiments do not report any
quantitative measurements of the initial degree of confluence
(Gujral et al., 2014; Kam et al., 2008; Maini et al. 2004a,b; Sherratt
and Murray, 1990). Many experimental protocols simply state that
the monolayer is either fully confluent (Kam et al., 2008) or 80%
confluent (Bryant et al., 2010) prior to making a scratch. These
reports of the degree of confluence are typically based on a quali-
tative judgment rather than quantitative measurements. To
investigate the significance of this, we perform a suite of IncuCyte
ZOOM™ assays, using PC-3 prostate cancer cells (Kaighn et al.,
1979), in which we systematically vary the initial density. A qua-
litative comparison of the experimental images suggests that the
rate of scratch closure is extremely sensitive to the initial density.
This dependence on the initial density is important since experi-
mental results are almost always reported without any quantita-
tive measurement of the initial density. This could explain why
scratch assays are difficult to reproduce.

We make quantitative measurements of the IncuCyte ZOOM™
assays by extracting cell density profiles and calibrating the solu-
tion of the Fisher–Kolmogorov model (Fisher, 1937; Kolmogorov
et al., 1937), to that data. This procedure provides an estimate of
the cell diffusivity, D, and the cell proliferation rate, λ, for each
initial density considered. This procedure is standard; however,
typical approaches deal with just one initial density (Cai et al.,
2007; Habbal et al., 2014; Maini et al. 2004a,b; Savla et al., 2004;
Sengers et al., 2007; Sherratt and Murray, 1990). The appropriately
calibrated solutions of the Fisher–Kolmogorov equation match our
experimental observations, for each initial density, very well.
However, our estimates of D and λ appear to depend upon the
initial cell density, and our estimates of D are extremely sensitive.
This result has two implications. First, additional mechanisms,
unaccounted for in the Fisher–Kolmogorov model, are likely to be
acting in the experimental system. To explore this possi-
bility we also examine the suitability of some potential extensions
of the Fisher–Kolmogorov model, such as the Porous–Fisher
equation (Sherratt and Murray, 1990; Sengers et al., 2007; Simpson
et al., 2011; Witelski, 1994,1995). Second, our results suggest that
previously reported procedures for estimating D and λ by cali-
brating the solution of the Fisher–Kolmogorov equation could
provide misleading results.
2. Methods

We perform monolayer scratch assays using the IncuCyte
ZOOM™ system (Essen BioScience, MI USA). All experiments are
performed using the PC-3 prostate cancer cell line (Kaighn et al.,
1979) from the American Type Culture Collection (ATCC, Manassas,
USA). Cells are propagated in RPMI1640 medium (Life
Technologies, Australia) in 10% foetal calf serum (Sigma-Aldrich,
Australia), with 100 U/mL penicillin, 100 μg=mL streptomycin (Life
Technologies), in plastic flasks (Corning Life Sciences, Asia Pacific)
in 5% CO2 and 95% air in a Panasonic incubator (VWR Interna-
tional) at 37 °C. Cells are regularly screened for Mycoplasma
(Nested PCR using primers from Sigma-Aldrich).

Cells grown to approximately 80% confluence are removed
from the plastic flask using TrypLE™ (Life Technologies) in phos-
phate buffered saline (pH 7.4), resuspended in medium and seeded
at various densities in 96-well ImageLock plates (Essen
BioScience). Cells are distributed in the wells as uniformly as
possible. We report results for initial cell densities of 10,000,
12,000, 14,000, 16,000, 18,000 and 20,000 cells per well. After
seeding, cells are grown overnight to allow for attachment and
some growth. We use a WoundMaker™ (Essen BioScience) to
create uniform, reproducible scratches in all the wells of a 96-well
plate. To ensure that as many cells are removed from the wound
region as possible, we modify the manufacturer's protocol by
repeating the scratch action 20 times before lifting the Wound-
Maker™. After creating the scratch, the medium is aspirated and
the wells are washed twice with fresh medium to remove cells
from the scratched area. Following the washes, 100 μL of fresh
medium is added to each well and the plate is placed into the
IncuCyte ZOOM™ apparatus. Images of the collective cell spread-
ing are recorded every two hours, for 48 hours. For each different
cell density, we perform three identically prepared experimental
replicates (n¼3).

We obtain numerical solutions to various parabolic reaction–
diffusion models using a finite difference method (Morton and
Mayers, 2005). The spatial domain, 0oxoLx, is uniformly dis-
cretised with grid spacing δx, and the spatial derivatives are
approximated using a central-difference approximation. Some of
the models we consider involve a nonlinear diffusion term, which
is discretised with an arithmetically averaged inter-node diffusiv-
ity. For all models considered, spatial discretisation leads to a
system of coupled nonlinear ordinary differential equations that
are integrated through time using a backward-Euler approxima-
tion with constant time steps of duration δt (Morton and Mayers,
2005). The systems of coupled nonlinear algebraic equations are
linearised using Picard (fixed-point) iteration, with absolute con-
vergence tolerance ϵ, and solved using the Thomas algorithm
(Morton and Mayers, 2005). For all results we choose δx, δt and ϵ
so that our algorithm produces grid-independent results.
3. Results and discussion

3.1. Qualitative assessment of experiments

A subset of the experimental images are presented in Fig. 1 for
the experiments initiated with 12,000, 16,000 and 20,000 cells per
well. Images in Fig. 1(a), (f) and (k) show that each experiment is
initiated with a clean, and sharp scratch. The initial difference in
cell density is visually distinct in the regions well behind the
position of the scratch. The temporal progression of each experi-
ment is shown in the columns of Fig. 1. In each case we see evi-
dence of combined cell migration and cell proliferation. Cells
located near the edge of the scratched region move into the vacant
region over time. Cells are also proliferating since we see the cell
density behind the location of the scratch increasing with time.
Interestingly, if we compare the final images of each experiment,
in Fig. 1(e), (j) and (o), a large portion of the initially-vacant wound
space in Fig. 1(e) remains uncolonised, whereas the total area
imaged in Fig. 1(o) appears to be colonised by t¼48 h.

Our visual interpretation of these images indicates that the
ability of PC-3 cells to re-colonise the wound space is very
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Fig. 1. A summary of IncuCyte ZOOM™ experiments. Images correspond to an experiment initiated with: (a)–(e) 12,000; (f)–(j) 16,000; and (k)–(o) 20,000 cells per well. The
time that the image is recorded is indicated on each subfigure and the scale bar corresponds to 300 μm. The images in (a), (f) and (k), at t¼0 h, show the approximate
location of the position of the leading edge (dashed green).
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sensitive to the initial density of cells. This observation is impor-
tant because many in vitro experiments do not report any
quantitative measurement of the initial degree of confluence
(Gough et al., 2011; Gujral et al., 2014; Kam et al., 2008; Maini
et al. 2004a,b), and our results suggest that it would be very dif-
ficult to replicate this kind of experiment unless the initial degree
of confluence is measured and reported.

Although our visual interpretation of the results in Fig. 1
implies that the rate of closure is very sensitive to the initial
density, it is not obvious at this stage whether the differences in
the rate of re-colonisation are caused by: (i) differences in the
initial cell density alone; (ii) differences in the rate of cell migra-
tion; (iii) differences in the rate of cell proliferation; or (iv) dif-
ferences in both the rates of cell migration and cell proliferation.
To address this question, we now interpret our experimental
results quantitatively by measuring the temporal evolution of the
spatial cell density profiles and using this data to calibrate a suite
of mathematical models to the data.

3.2. Quantitative assessment of experiments

We divide each image into 39 equally-spaced columns
(Charteris and Khain, 2014; Khain et al., 2011, 2012). Each column
is 50 μm wide, as shown in Fig. 2(a). We do not use data from the
right most column since the imaging system superimposes a scale
bar in that columnwhich partially obscures certain cells. We count
the numbers of cells in the remaining columns, i¼ 1;2;3;…;38,
and divide the total number of cells per column by the column
area to give an estimate of the cell density in each column. We
repeat this process for each replicate and calculate the sample
mean and sample standard deviation of the cell density in each
column for t ¼ 0;12;24;36 and 48 h (Supplementary Material
Document 2–7). Plots of the mean cell density, with error bars



Fig. 2. To quantify the cell density profile, each image is divided into vertical columns of width 50 μm, as shown in (a), from which manual cell counting is used to estimate
the cell density at positions x¼ 25;75;125;…;1925 μm. To count and record the locations of individual cells we zoom in to focus on certain subregions, such as the subregion
shown in (b), which corresponds to the rectangle highlighted in (a). Using the counting features in Adobe Photoshop, we identify individual cells and place a unique marker
on each cell (red disk) as shown in (b). After each image is processed in this way we have then identified the location and total number of cells in each image, as shown in (c).
The average cell density profile is calculated by averaging results for three identically-prepared experimental replicates. To quantify the carrying capacity density, K, we count
the cell density in two regions at t¼48 h. The locations of the two regions are indicated in (d). These two regions are located well behind the initial position of the leading
edge. Estimates of K are obtained using three identically-prepared experimental replicates and the results are averaged to give K ¼ 1:7� 10�3 cells=μm2. The scale bar in
each image corresponds to 300 μm. These particular experimental images correspond to one of the replicates from an experiment initialised with 20,000 cells per well. All
parameter estimates reported in this caption are given to two significant figures.(For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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indicating the sample deviation, are given in Fig. 3. In general, we
see that the variability between the different experimental repli-
cates for each initial condition is small (Supplementary Material
Document 2–7). In contrast, the evolution of the cell density
profiles with different initial conditions gives vastly different
results. For example, the cell density profiles in Fig. 3(a), shows
that the initial location of the scratch, where the local density is
approximately zero, is evident after t¼48 h. In contrast, the pro-
files in Fig. 3(f) indicate that the population becomes almost uni-
formly confluent after t¼48 h. Overall, the general trends in Fig. 3
show that the experiments with a higher initial density leads to a
more rapid re-colonisation.

3.3. Measuring the carrying capacity density K

The carrying capacity density, K40, is the maximum density
for a monolayer of cells. Comparing various cell density profiles in
Fig. 3, we see that the experiments initialised with 20,000 cells
become more confluent by t¼48 h than the experiments initi-
alised with smaller numbers of cells. Therefore, to estimate K we
focus on the data from experiments initialised with 20,000 cells at
t¼48 h, to ensure that our estimate of K corresponds to a con-
fluent population. We estimate K by calculating the cell density in
two subregions, each of width 200 μm, located well-behind the
initial position of the front, as indicated in Fig. 2(d). We count the
total number of cells in these two subregions and divide by the
total area. Repeating this procedure for our three identically-
prepared experimental replicates gives: K ¼ 1:71� 10�3;1:74�
10�3 and 1:69� 10�3 cells=μm2. Therefore, our estimate is
K ¼ 1:7� 10�372:5� 10�5 cells=μm2, where the variability is
indicated by the sample standard deviation. Since the variability is
very small, with the coefficient of variation just 1.5%, our estimate
is precise. Our estimate is consistent with previously research. For
example, Cai et al. report K ¼ 1:0� 10�3 cells=μm2 for fibroblasts,
whereas Treloar et al. report K ¼ 1:6� 10�3 cells=μm2 for 3T3
fibroblast cells in a circular barrier assay.

Our estimate of K is consistent with certain features of the cell
density profiles in Fig. 3 since our measurements of Cðx; tÞ appear
to approach K after a sufficiently large amount of time has elapsed.
This is evident in Fig. 3(e), (f) where the population becomes
almost uniformly confluent by t¼48 h and we have Cðx; tÞ-K � as
t becomes sufficiently large. Since our experimental data contains
fluctuations (Supplementary Material Document 2–7). and our
estimate of K represents an average, we do occasionally observe
estimates of cell density that exceed our estimate of K.

3.4. Fisher-Kolmogorov model

The Fisher-Kolmogorov model has been used to describe col-
lective cell spreading in both in vitro (Maini et al. 2004a,b; Sherratt
and Murray, 1990; Sengers et al., 2007) and in vivo (Jackson et al.,
2015; Lewis Neal et al., 2013; Rockne et al., 2014) contexts. Cali-
brating the solution of the Fisher-Kolmogorov model to experi-
mental data can be used to quantify the roles of cell migration and
cell proliferation (Maini et al. 2004a,b; Sengers et al., 2007). Given
our estimates of the average cell density profiles in Fig. 3 together
with our estimate of K, we will calibrate the solution of the Fisher-
Kolmogorov model to our data. In this work we apply
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Fig. 3. Cell density profiles. Results in (a)–(f) correspond to experiments initiated with 10,000, 12,000, 14,000, 16,000, 18,000 and 20,000 cells per well, respectively. For each
different initial condition, experimental cell density profiles are shown at t¼0, 12, 24, 36 and 48 h. Each experiment was repeated n¼3 times. The average density cor-
responds to the sample mean and the error bars indicate the variability, corresponding to the sample standard deviation.
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on 0rxr1900 μm, where D¼D is the cell diffusivity and λ is the
cell proliferation rate. The cell proliferation rate is related to the
cell doubling time, td ¼ lnð2Þ=λ. To determine the appropriate
boundary conditions for Eq. (1), we recall that the diameter of the
96-well plate is 9000 μm whereas the width of view of the
experimental images is just 1950 μm. Therefore, the actual dis-
tribution of cells in each well extends far beyond the vertical
boundaries of the images in Fig. 1. Since the cells are initially
distributed uniformly, and the distribution of cells appears to
remain approximately spatially uniform far away from the edges of
the scratch for the duration of the experiment, we impose zero net
flux boundary conditions at both x¼ 0 μm and x¼ 1900 μm
(Binder and Simpson, 2015). The initial condition for Eq. (1) is
specified using the mean cell density data obtained by direct cell
counting at t¼0 h. The data in Fig. 3 at t¼0 h gives the average cell
density at the center of each column in Fig. 2(a), corresponding to
x¼ 25;75;125;…;1875 μm, for the six different experiments with
different initial densities. We specify the continuous initial con-
dition, Cðx;0Þ, for the numerical solution of Eq. (1) by linearly
interpolating these measurements at t¼0 h.

While our experiments are genuinely two-dimensional, we
always consider a special class of problems where the initial
density is, on average, independent of the vertical location in the
field of view. Under these conditions it is standard to quantify the
cell density profiles by dividing the experimental image into many
equally-spaced columns and to report the cell density using a one-
dimensional column-averaged cell density and to calibrate the
solution of a one-dimensional reaction-diffusion equation to that
data (Charteris and Khain, 2014; Khain et al., 2011, 2012). Some of
our previous analysis has shown that, in general, there can be an
error introduced by approximating a two-dimensional no-
nlinear reaction-diffusion equation by a vertically-averaged
one-dimensional reaction-diffusion equation (Simpson et al.,
2009; Simpson, 2009). However, whenwe consider a special initial
condition where the density is independent of vertical location
(Fig. 1), the averaging error vanishes (Simpson, 2009).

To estimate D and λ we minimise a least-squares error
describing the discrepancy between the solution of Eq. (1) and the
average cell density profiles. The least-squares error is given by

EðD; λÞ ¼
X38
i ¼ 1

X4
j ¼ 1

Cmodelðxi; tjÞ�Cdataðxi; tjÞ
h i2

; ð2Þ

where Cmodelðx; tÞ is the numerical solution of Eq. (1) and Cdataðx; tÞ
is the average cell density data. The index i indicates the position
along the x coordinate where the cell density is measured so that
i¼ 1;2;3;…;38. The index j indicates the time so that j¼ 1;2;3
and 4 corresponds to t ¼ 12;24;36 and 48 h. We denote the least-
squares estimate of D and λ as D and λ, respectively, such that
EðD; λÞ is a minimum.

In the literature, cell diffusivities are reported to be in the range
of 10–3000 μm2=h (Cai et al., 2007; Vo et al., 2015; Maini et al.
2004a,b; Sengers et al., 2007). Similarly, cell doubling times are
typically reported to be within the range of 10–30 h (Johnston
et al., 2014). Therefore, we begin our parameter estimation by
conservatively limiting our search to within 0rDr4000 μm2=h
and 0rλr0:1=h. Using numerical solutions of Eq. (1), we plot
EðD; λÞ for each set of experimental data in Fig. 4(a)–(f). Each
subfigure in Fig. 4(a)–(f) shows EðD; λÞ constructed by considering
a grid of 100 equally-spaced intervals of D, and 50 equally-spaced
values of λ. Visual inspection of EðD; λÞ in Fig. 4(a)–(f) confirms that
each error surface appears to contain a well-defined minimum,
from which we estimate D and λ. After we have obtained our
initial estimates using the surfaces in Fig. 4(a)–(f), we refine our
estimates by identifying a subregion surrounding the point ðD; λÞ,



Fig. 4. (a)–(f) Error surface profiles, EðD; λÞ, for the Fisher-Kolmogorov model. The error surface profiles, EðD; λÞ, are constructed using 100 equally-spaced values of D in
0rDr4000 μm2=h, and 50 equally-spaced values of λ in 0rλr0:1=h. The value of EðD; λÞ in (a)–(f) is shown on the left-most colour bar. (g)–(l) Refined estimates of EðD; λÞ
centered about the minima identified in (a)–(f) (white rectangle). The value of EðD; λÞ in (g)–(l) is shown on the right-most colour bar. The location of D and λ in each case is
shown as a red square. Estimates of ðD; λÞ correspond to: (a) ð320;0:043Þ, (b) ð240;0:043Þ, (c) ð730;0:049Þ, (d) ð570;0:049Þ, (e) ð730;0:055Þ, (f) ð1050;0:063Þ, (g) ð310;0:044Þ,
(h) ð250;0:044Þ, (i) ð720;0:048Þ, (j) ð570;0:049Þ, (k) ð760;0:054Þ, (l) ð1030;0:064Þ. All parameter estimates reported in this caption are given to two significant figures.

Table 1
Estimates of D and λ for the Fisher-Kolmogorov model obtained by calibrating the
solution of Eq. (1) to the average cell density profiles for all six different initial
conditions. The right-most column gives the doubling time, td ¼ lnð2Þ=λ . All
parameter estimates are given to two significant figures.

Initial number of cells D ( μm2/h) λ (/h) td (h)

10,000 3107130 0.04470.005 15.75
12,000 2507140 0.04470.002 15.75
14,000 720760 0.04870.001 14.44
16,000 5707250 0.04970.003 14.15
18,000 760780 0.05470.003 12.84
20,000 10307200 0.06470.001 10.83
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shown in Fig. 4(a)–(f) as a white rectangle, and we refine our
search within this subregion. Results in Fig. 4(g)–(l) show a refined
plot of EðD; λÞ constructed using a grid of 100 equally-spaced
intervals of D and 50 equally-spaced values of λ within the sub-
regions identified in Fig. 4(a)–(f). The refined plots of EðD; λÞ in
Fig. 4(g)–(l) focus on the subregion with D�200rDrDþ200 μ
m2=h and λ�0:01rλrλþ0:01=h. Each refined plot of EðD; λÞ in
Fig. 4(g)–(l) also appears to contain a well-defined minimum from
which we can identify refined estimates of ðD; λÞ. Using this
approach we found that our refined estimates of D and λ obtained
from Figs. 4(g)–(l) are not very different from the original esti-
mates identified in Figs. 4(a)–(f). Therefore, we make no additional
refinements, and a summary of our refined estimates is given in
Table 1.

To provide an additional check on our estimates of D and λ in
Table 1, we also used these estimates, together with our mea-
surements K, as an initial guess for a MATLAB Levenberg
Marquardt-based calibration algorithm (Coleman and Li, 1996). We
found that applying the MATLAB routine produced parameter
estimates that are very similar to those in Table 1, so we do not
report any additional results from the MATLAB algorithm here.
Instead, we prefer to manually explore the error surface. This
allows us to visualise the shape of the error surface, providing us
with additional qualitative and quantitative information about the
quality of the match between the mathematical model and the
experimental data.
Our estimates of D and λ in Table 1 show several interesting
trends, the most obvious being that we obtain very different
estimates of D and λ for each initial condition. In general, both D
and λ increase with the initial density of cells. In particular, we
have an approximately 45% variation in λ and an approximately
310% variation in D across the different experiments with different
initial conditions. Therefore, our estimates of D appear to be more
sensitive to variations in the initial density rather than λ. We note
that the estimates of D and λ are obtained by calibrating the
solution of Eq. (1) to the average cell density profiles shown in
Fig. 3. In addition, we also calibrated the solution of Eq. (1) to each
of the three individual cell density profiles from each experimental
replicate to provide three additional estimates of the cell diffu-
sivity and the cell proliferation rate for each initial density of cells.
By calculating the sample standard deviation from these additional
estimates we also report, in Table 1, an estimate of the variability
in our estimates of D and λ between the three experimental
replicates for each different initial cell density. The variability in
our estimates of D and λ between each experimental replicate
with the same initial density is much smaller than the variability
we observe between different experiments with different initial
cell density.

To demonstrate the quality of match between the experimental
data and the calibrated solution the Fisher-Kolmogorov model, we
superimpose, in Fig. 5, the experimental data and the calibrated
solution of Eq. (1) for each initial condition. For each of the six
different initial conditions we solve Eq. (1) numerically setting D
¼D and λ¼ λ using the values reported in Table 1. The quality of
match between the calibrated Fisher-Kolmogorov equation and
the experimental data is excellent.

Our approach of calibrating the Fisher-Kolmogorov model to
each data set for the various initial conditions separately reveals
several important insights. For example, had we followed a stan-
dard approach and studied just one initial condition (e.g. Maini
et al. 2004a,b; Sengers et al., 2007), we would have identified
estimates of D and λ for which our numerical solution of Eq. (1)
would match the experimental data extremely well. However, had
another researcher attempted to repeat our experiments and
parameter estimation procedure, it is likely that a small change in
the initial density could lead to a large change in the estimates of
D and λ. This is an important limitation since many cell migration



Fig. 5. Calibrated solutions of Eq. (1) to the averaged cell density profiles. Results in (a)–(f) show the average cell density for experiments initiated with 10,000, 12,000,
14,000, 16,000, 18,000 and 20,000 cells per well. In each experiment profiles at t¼0, 12, 24, 36 and 48 h are shown. The solid lines correspond to the solution of Eq. (1) with
the least squares estimates of D and λ from Table 1. All results correspond to K ¼ 1:7� 10�3 cells=μm2 and the numerical solution of Eq. (1) is obtained with δx¼ 0:25 μm,
δt ¼ 0:2 h and ϵ¼ 10�5.
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assays neglect to measure the initial density (e.g. Gujral et al.,
2014; Maini et al. 2004a,b; Sherratt and Murray, 1990). Therefore,
given the extreme sensitivity of the experimental outcomes to the
initial density, it is essential that the initial degree of confluence
ought to be measured and reported if the experiment is to be
reproductive.

Our finding, that D and λ appear to depend on the initial
density, implies that the Fisher-Kolmogorov model does not apply
to our experimental system. Since the Fisher-Kolmogorov model
has constant coefficients, an implicit assumption in the application
of this model is that D and λ are independent of the cell density.
However, we find that D and λ are very sensitive to the initial
density. This motivates us to consider what kind of additional
mechanisms might be relevant. One particular criticism of the
Fisher-Kolmogorov model is that the linear diffusion term neglects
to account for any cell-to-cell adhesion effects (Anguige and
Schmeiser, 2009; Deroulers et al., 2009, Khain et al., 2011, 2012;
Nardini et al., 2015). It is of interest to note that our experimental
results imply that higher initial density leads to enhanced cell
spreading (Fig. 1). This is inconsistent with the idea that cell-to-
cell adhesion plays an important role in our experiments, since
larger initial cell densities would lead to more frequent cell-to-cell
collisions and adhesion would lead to a reduced collective
spreading of the population. To capture potential adhesive effects,
many continuum models take the form of a nonlinear diffusion
mechanismwhere the cell diffusivity, D, is a decreasing function of
C (Anguige and Schmeiser, 2009; Deroulers et al., 2009; Khain et
al., 2011; ?Nardini et al., 2015). In contrast, our results imply that
larger initial cell density is associated with increased cell
spreading. This motivates us to consider a model in which D is an
increasing function of C.

3.5. Porous-Fisher model

Although many studies have examined various theoretical
aspects of extensions of the traditional constant coefficient Fisher-
Kolmogorov model (e.g. Curtis and Bortz, 2012; Harris, 2004;
Hammond and Bortz, 2011; Witelski 1994,1995), less attention has
been devoted to determining whether collective cell spreading is
best modelled using the constant coefficient Fisher-Kolmogorov
model or a variable coefficient generalisation of the Fisher-
Kolmogorov model. We will now briefly survey the most rele-
vant studies that have begun to explore this question. Maini et al.
(2004a,b) model the motion of the position of the cell front in an
in vitro scratch assay using the Fisher-Kolmogorov equation.
Although they find that the Fisher-Kolmogorov model is consistent
with their experimental observations, they conclude by suggesting
that their analysis could be improved by considering the Porous-
Fisher model in which the cell flux is governed by a nonlinear
diffusion term D¼DðC=KÞ, so that the diffusivity increases with C.
Sherratt and Murray model the closure of a radial wound using
both the Fisher-Kolmogorov equation and the Porous-Fisher
model. Sherratt and Murray find that both reaction-diffusion
models can be used to replicate their experimental observations.
Similarly, Sengers et al. (2007) collect data from two different cell
types in a series of in vitro cell spreading experiments and calibrate
the solutions of the Fisher-Kolmogorov and Porous-Fisher equa-
tions to their data. Sengers et al. find that the Fisher-Kolmogorov
model fits the experimental data for one particular cell line very



Fig. 6. (a)–(f) Error surface profiles, EðD; λÞ, for the Porous-Fisher model. The error surface profiles, EðD; λÞ, are constructed using 100 equally-spaced values of D in 0rD
r4000 μm2=h and 50 equally-spaced values of λ in 0rλr0:1=h. The value of EðD; λÞ in (a)–(f) is shown on the left-most colour bar. (g)–(l) Refined estimates of EðD; λÞ
centered about the minimum identified in (a)–(f) (white rectangle). The value of EðD; λÞ in (g)–(l) is shown on the right-most colour bar. The location of D and λ in each case is
shown as a red square. Estimates of ðD; λÞ correspond to: (a) ð1800;0:043Þ, (b) ð1300;0:043Þ, (c) ð2900;0:049Þ, (d) ð2300;0:049Þ, (e) ð2800;0:053Þ, (f) ð3000;0:063Þ, (g)
ð1800;0:044Þ, (h) ð1300;0:043Þ, (i) ð3000;0:048Þ, (j) ð2400;0:049Þ, (k) ð2800;0:054Þ, and (l) ð2900;0:064Þ. All parameter estimates reported in this caption are given to two
significant figures.(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Estimates of D and λ for the Porous-Fisher model obtained by calibrating the
solution of Eq. (3) to the average cell density profiles for all six different initial
conditions. The right-most column gives the doubling time, td ¼ lnð2Þ=λ . All
parameter estimates are given to two significant figures.

Initial number of cells D ( μm2/h) λ (/h) td (h)

10,000 180071050 0.04470.005 15.75
12,000 13007930 0.04370.002 16.12
14,000 30007190 0.04870.001 14.44
16,000 24007990 0.04970.003 14.15
18,000 28007100 0.05470.004 12.84
20,000 29007620 0.06470.002 10.83
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well, whereas the Porous-Fisher model fits the experimental data
for the other cell line very well. This suggests that some cell lines
might be best described by the Fisher-Kolmogorov model while
others might be best described by the Porous-Fisher model. While
these four previous studies are unique in that they directly com-
pare the relative performance of the Fisher-Kolmogorov and
Porous-Fisher models, we note that they did not consider the
impact of varying the initial density of cells in their experimental
system (Maini et al. 2004a,b; Sengers et al., 2007; Sherratt and
Murray, 1990).

We now calibrate the solution of the Porous-Fisher model to
our data. For our work we consider

∂C
∂t

¼D
∂
∂x

C
K

� �
∂C
∂x

� �
þλC 1� C

K

� �� �
; ð3Þ

on 0rxr1900 μm. We impose the same initial and boundary
conditions used in Section 3.4. The only difference between Eqs.
(1) and (3) is the nonlinear diffusion mechanism in Eq. (3), where
D¼DðC=KÞ. In particular, both models contain the same two
unknown parameters: D and λ.

To estimate D and λ in Eq. (3) we followed a similar approach
that we use when working with Eq. (1) by plotting EðD; λÞ, given by
Eq. (2), and restricting the range of D and λ to be the same as
before. The error surfaces in Figs. 4 and 6 appear to be different.
For example, the error surface in Fig. 6(a) has a less well defined
minimum than the surface in Fig. 4(a). The error surface in Fig. 6
(a) contains a valley-shaped region, parallel to the D-axis, whereas
the surface in Fig. 4(a) does not. Regardless of this difference, we
follow the same procedure used previously to identify D and λ in
Fig. 6(a)–(f). We also refine our estimates by identifying a sub-
region about the point ðD;λÞ in Fig. 6(a)–(f) and plotting EðD; λÞ
centered about this point in Fig. 6(g)–(l). Estimates of D and λ from
the refined subregion in Fig. 6(g)–(l) are given in Table 2.

Our estimates of λ for the Porous-Fisher model are very similar
to our estimates for the Fisher-Kolmogorov model, and we observe
a variation in λ of approximately 49% between the different initial
conditions. We also observe a variation in our estimates of D for
the Porous-Fisher model of approximately 130%, which is much
smaller than the variation in D for the Fisher-Kolmogorov model.
To demonstrate the quality of match between the experimental
data and the solution the Porous-Fisher model we superimpose, in
Fig. 7, the experimental data and the solution of Eq. (3) for each
initial condition, and in each case we solve Eq. (3) numerically
with D¼D and λ¼ λ reported in Table 2. The quality of match
between the calibrated Porous-Fisher equation and the experi-
mental data is excellent.

The question of whether our experimental data is best described
by the Fisher-Kolmogorov or the Porous-Fisher model is a delicate
one. Since our estimates of D and λ for the Porous-Fisher model are
less sensitive to the initial density than for the Fisher-Kolmogorov
model, it appears that the Porous-Fisher model provides a better
description of our experimental data. Although the Porous-Fisher
model is preferable in this regard, our parameter estimation pro-
cedure still implies that D and λ appear to depend on the initial
density of cells for the Porous-Fisher model, suggesting that further
model refinements could be warranted. Some previous studies
suggest a further generalisation of the Porous-Fisher model where
the nonlinear diffusivity function is generalised to D¼DðC=KÞm
(Harris, 2004; Sherratt and Murray, 1990). This means that setting
m¼0 in the generalised Porous-Fisher model corresponds to the
Fisher-Kolmogorov model. We also calibrate solutions of the
Porous-Fisher model to our data with m¼1/2, 2, 3 and 4. The
calibrated model provides a poor match to the data with m¼2,
3 and 4, whereas we observe a good match with m¼1/2 and m¼1.
The variation in D and λ is smaller for m¼1 than for m¼1/2, and
therefore we conclude that the standard Porous-Fisher model with



Fig. 7. Calibrated solutions of Eq. (3) to the averaged cell density profiles. Results in (a)–(f) show the average cell density (circles) for experiments initiated with 10,000,
12,000, 14,000, 16,000, 18,000 and 20,000 cells per well. In each experiment profiles at t¼0, 12, 24, 36 and 48 h are shown. The solid lines correspond to the solution of Eq.
(3) with the least squares estimates of D and λ from Table 2. All results correspond to K ¼ 1:7� 10�3 cells=μm2 and the numerical solution of Eq. (3) is obtained with
δx¼ 0:25 μm, δt ¼ 0:2 h and ϵ¼ 10�5.
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m¼1 outperforms the generalised Porous-Fisher model with the
other values of m that we consider (Supplementary Material
Document 1) . We also consider calibrating a model of chemokin-
esis to our data (Supplementary Material Document 1) and
demonstrate that this kind of detailed, coupled model, also has the
potential to describe our experimental data.
4. Conclusions

In this work we explore a previously overlooked source of
variability which affects the reproducibility of scratch assays. In a
standard experiment, the initial degree of confluence is neither
measured or varied (Ashby and Zijlstra, 2012; Kramer et al., 2013).
To explore the significance of this, we perform a suite of cell
migration assays in which we deliberately vary the initial cell
density. Our results show that the rate of re-colonisation is
extremely sensitive to the initial density. Therefore, if a scratch
assay is to be reproducible, the initial density must be measured
and reported.

To quantify the rate of cell migration and proliferation we use a
cell counting procedure to estimate the average cell density pro-
files and the carrying capacity density, K. Estimates of D and λ are
obtained by calibrating the Fisher-Kolmogorov model to the data
for each initial condition. The calibrated solutions of the Fisher-
Kolmogorov model match the experimental cell density profiles,
for each initial condition, very well. However, comparing estimates
of D and λ for different initial conditions shows that different
initial conditions lead to very different estimates of D and λ. In
particular, λ varies by approximately 45% whereas D varies by
approximately 310% across our six different initial conditions. This
result is novel since previous studies have considered just one
initial condition, and our results show that this standard approach
can give very misleading results.

Since our data implies that larger initial cell densities lead to
enhanced migration, we calibrate the Porous-Fisher model, with
DðCÞ ¼DðC=KÞ, to our data. This exercise shows that the Porous-
Fisher model matches the evolution of each of our experiments
with estimates of D and λ that are less variable between experi-
ments with different initial conditions than the standard Fisher-
Kolmogorov model, suggesting that the Porous-Fisher model
provides an improved match to our experimental data. To explore
further potential refinements, we also calibrated other reaction-
diffusion models to the data, but we found that these extensions
offered no advantage over the Porous-Fisher model (Supplemen-
tary Material Document 1). Another feature of our analysis is that
the error surfaces are more sensitive to variations in λ than D. This
could be associated with the way that we have imaged and ana-
lysed the experiments. Most of the cells in the field of view are
associated with the dense unscratched regions where the
dynamics of the experiments are largely associated with pro-
liferation rather than migration. This means that we characterise D
using data from the scratched region where the density is, by
definition, low, and hence more variable. This could explain why
the error surfaces tend to be more dependent on λ than D.

All of the extensions of the Fisher-Kolmogorov model that we
consider deal with introducing more detail into the flux term of
the reaction-diffusion model. We deliberately choose to focus on
the flux term because our estimates of D are far more sensitive to
variations in the initial condition than λ in the proliferation term.
In principle, it is possible to examine other extensions where the
proliferation term, λCð1�C=KÞ, is generalised to λCαð1�½C=K�βÞγ ,
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where α, β and γ are real positive constants (Tsoularis and Wallace,
2002). We do not pursue this idea here because the variation in λ
for the six different initial conditions is much smaller compared to
the variation in D.

In summary, our study reveals insights that have both experi-
mental and mathematical significance. From an experimental
point of view, our results give a partial explanation about why
scratch assays are difficult to reproduce. We recommend that
measurements of the initial cell density must be reported when
describing the outcomes of a scratch assay. From a mathematical
point of view we show that a standard approach of calibrating the
solution of the Fisher-Kolmogorov model to a scratch assay with a
single initial condition can produce misleading estimates of D and
λ. Since our estimates of D and λ appear to depend on the initial
cell density, we suggest that a refined version of this constant
coefficient model is warranted and we show that calibrating the
Porous-Fisher model to our data leads to an improved outcome in
this regard.
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