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� New moment dynamics model to describe the movement of interacting cell populations.
� Moment dynamics model applied to mimic two different cell biology experiments.
� Moment dynamics predictions outperform traditional mean-field PDE descriptions.
� Provide guidance regarding situations where the moment dynamics model is required.
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a b s t r a c t

Mathematical models describing the movement of multiple interacting subpopulations are relevant to many
biological and ecological processes. Standard mean-field partial differential equation descriptions of these
processes suffer from the limitation that they implicitly neglect to incorporate the impact of spatial correlations
and clustering. To overcome this, we derive a moment dynamics description of a discrete stochastic process
which describes the spreading of distinct interacting subpopulations. In particular, we motivate our model by
mimicking the geometry of two typical cell biology experiments. Comparing the performance of the moment
dynamics model with a traditional mean-field model confirms that the moment dynamics approach always
outperforms the traditional mean-field approach. To provide more general insight we summarise the perf-
ormance of the moment dynamics model and the traditional mean-field model over a wide range of
parameter regimes. These results help distinguish between those situations where spatial correlation effects
are sufficiently strong, such that a moment dynamics model is required, from other situations where spatial
correlation effects are sufficiently weak, such that a traditional mean-field model is adequate.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Biological and ecological processes often involve moving fronts of
interacting subpopulations. For example, in a biological setting, mal-
ignant spreading occurs when tumour cells interact with, and move
through, the stroma (Bhowmick and Moses, 2005; De Wever and
Mareel, 2003; Gatenby et al., 2006; Li et al., 2003). In an ecological
setting, the spreading of an invasive species involves moving fronts,
that, in some cases, is coupled with a retreating front of that species'
prey (Hastings et al., 2005; Phillips et al., 2007; Skellam, 1951).

Fig. 1 shows images of two different types of cell biology exp-
eriments involving moving fronts of interacting subpopulations. Fig. 1
(a)–(c) shows images of a co-culture scratch assay (Oberringer et al.,
2007). This assay is constructed such that initially we have two
subpopulations present in a certain region of the domain that is
adjacent to a vacant region. As time proceeds, the two subpopulations
spread into the vacant space. The image in Fig. 1(c) indicates that one
of the subpopulations is clustered, whereas the other subpopulation is
more evenly distributed. The image in Fig. 1(d) shows a subpopulation
of initially confined melanoma cells that are spreading into a surr-
ounding subpopulation of fibroblast cells (Li et al., 2003). These images
demonstrate that collective cell spreading processes can involve mov-
ing fronts of interacting subpopulations. Given the importance of
collective cell spreading processes to a range of biological applications,
including wound healing and malignant spreading, it is relevant for us
to develop robust mathematical and computational tools that can
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accurately describe the motion of these kinds of multispecies moving
front problems.

Previous mathematical modelling of problems involving moving
fronts of multiple interacting subpopulations have typically involved
studying systems of reaction–diffusion partial differential equations
(PDEs) (Gatenby and Gawlinski, 1996; Painter and Sherratt, 2003;
Sherratt, 2000; Simpson et al., 2007a,b; Smallbone et al., 2005). For
example, Sherratt (2000) considers a two-species model of tumour
growth. In this model, the movement of the tumour cell subpopula-
tion, vðx; tÞ, is inhibited by the stroma subpopulation, uðx; tÞ. Cell
proliferation is also influenced by crowding, since the rate of prolif-
eration is a decreasing function of the total cell density, uðx; tÞþvðx; tÞ
(Sherratt, 2000). More generally, Painter and Sherratt (2003) suggest
that the motion of interacting cell subpopulations depends on the
gradient of each particular species’ density, as well as the gradient of
the total cell density. Focusing specifically on tumour invasion,
Gatenby and Gawlinski (1996) propose a three-species model, where
the density of normal tissue decreases due to an excess concentration
of Hþ ions. Smallbone et al. (2005) extend the Gatenby and Gawlinski
three-species model by including a necrotic core within the tumour,
which is more consistent with biological observations. However, while
these models provide valuable insight into the interaction of multiple
cell subpopulations, they are limited in two ways. First, each of these
PDE models relies on invoking a mean-field assumption. That is, these
models implicitly assume that individuals in an underlying stochastic
process interact at a rate that is proportional to the average density
(Grima, 2008). This assumption amounts to the neglect of any spatial
structure present in the subpopulations (Law and Dieckmann, 2000).
Second, these PDE models describe population-level behaviour, and
do not explicitly consider individual-level information that could
be relevant when dealing with certain types of experimental data
(Simpson et al., 2013).

Instead of working directly with PDEs, mean-field descriptions of
collective cell behaviour have been derived from discrete individual-
level models (Binder and Landman, 2009; Codling et al., 2008;
Fernando et al., 2010; Khain et al., 2012; Simpson et al., 2009,
2010). These discrete models, which can also incorporate crowding
(Chowdhury et al., 2005), can be identified with corresponding
mean-field continuum PDE models that aim to describe the average
behaviour of the underlying stochastic process. Using this kind of
approach gives us access to both discrete individual-level informa-
tion as well as continuum population-level information. For example,
to model the migration of adhesive glioma cells, Khain et al. (2012)
derive a mean-field PDE description of a discrete process which
incorporates cell motility, cell-to-cell adhesion and cell proliferation.
However, while the relationship between the averaged discrete data
and the solution of the corresponding mean-field PDE description is
useful in certain circumstances, it is well-known that the assump-
tions invoked when deriving mean-field PDE descriptions are inap-
propriate in certain parameter regimes, due to spatial correlations
between the occupancy of lattice sites (Baker and Simpson, 2010;

Johnston et al., 2012; Simpson and Baker, 2011). The impact of spatial
correlation is relevant when we consider patchy or clustered dis-
tributions of cells, such as in Fig. 1(b) and (c). Baker and Simpson
(2010) partly address this issue by developing a moment dynamics
model that approximately incorporates the effect of spatial correla-
tion. Markham et al. (2013) extend this work, but focus on problems
where the initial distribution of cells is spatially uniform, meaning
that the modelling and computational tools developed by Markham
et al. (2013) are not suitable for studying the motion of moving fronts
of various interacting subpopulations.

In this work we consider a discrete lattice-based model for desc-
ribing the motion of a population of cells where the total population is
composed of distinct, interacting subpopulations. To understand how
our work builds on previous methods of analysis, we derive a standard
mean-field description of the discrete model and demonstrate that, in
certain parameter regimes, the mean-field model does not describe
the averaged discrete behaviour. By considering the dynamics of the
occupancy of lattice pairs, we derive one- and two-dimensional mom-
ent dynamics descriptions that incorporate an approximate descrip-
tion of the spatial correlation present in the system. Motivated by the
geometry of the two typical cell biology experiments in Fig. 1, we
apply our model to two case studies. The first case study is relevant to
co-culture scratch assays and the second case study is relevant to the
invasion of one subpopulation into another subpopulation, thereby
mimicking tumour invasion processes. Through these case studies we
demonstrate that our moment dynamics model provides a signifi-
cantly more accurate description of the averaged discrete model
behaviour. Finally, we discuss our results and outline directions for
future work.

2. Methods

2.1. Discrete model

We consider a lattice-based randomwalk model where each lattice
site may be occupied by, at most, one agent (Chowdhury et al., 2005).
The model is presented for situations where there are two subpopula-
tions, denoted by superscripts G and B, and we note that the frame-
work could be extended to include a larger number of subpopulations
if required. The superscripts G and B correspond to the colour scheme
in our figures where results relating to the G subpopulation are given
in green and results relating to the B subpopulation are given in blue.
The discrete process takes place on a one-dimensional lattice, with
lattice spacing Δ, where each site is indexed iA ½1;X�. Agents on the
lattice undergo movement, proliferation and death events at rates PmG ,
Pp
G, PdG and Pm

B , PpB, PdB per unit time, for subpopulations G and B,
respectively. During a potential motility event, an agent at site i
attempts to move to site i71, with the target site chosen with equal
probability. This potential event will be successful only if the target site
is vacant. A proliferative agent at site i attempts to place a daughter

Fig. 1. Co-culture scratch assay containing human dermal microvascular endothelial cells (red) and human dermal fibroblasts (green) at (a) 0 hours, (b) 24 hours and (c) 48
hours. Adapted from Oberringer et al. (2007). (d) Human fibroblasts (blue) and TGF-β1 transduced 451Lu melanoma cells (brown), 19 days after subcutaneous injection into
immunodeficient mice. Adapted from Li et al. (2003). (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this
paper.)
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agent at site i71, with the target site chosen with equal probability.
This event will only be successful if the target site is vacant. Agent de-
ath occurs by simply removing an agent from the lattice. For all results
presented in this work, we apply periodic boundary conditions. How-
ever, in practice, we only consider initial conditions and timescales
such that the effects of the boundary conditions at i¼1 and i¼X are
unimportant.

For the two-dimensional discrete model, we define a square two-
dimensional lattice, with lattice spacing Δ, where each lattice site is
indexed (i,j), where iA ½1;X� and jA ½1;Y�. A motile agent at (i,j) will
attempt to step to site ði71; jÞ or ði; j71Þ, with the target site chosen
with equal probability. Similarly, a proliferative agent at (i,j) will
attempt to deposit a daughter agent at site ði71; jÞ or ði; j71Þ, with
the target site chosen with equal probability. Since the model is an
exclusion process, any potential motility or proliferation event that
would place an agent on an occupied site is aborted. Agent death occ-
urs by removing an agent from the lattice. While we do not explicitly
consider extending this model to a three-dimensional lattice, it is
straightforward to perform discrete simulations on a three dimen-
sional lattice (Baker and Simpson, 2010).

We use the Gillespie (1977) algorithm to generate sample paths
from the discrete model. An individual realisation of the Gillespie
algorithm results in the binary lattice occupancy, Ck

i , at each site
i. To obtain averaged density information we performM identically
prepared realisations of the discrete algorithm and calculate the
average lattice occupancy Ck

i ¼ 〈Ck
i 〉, which represents the prob-

ability that lattice site i is occupied by an agent of subpopulation
kAfG;Bg.

2.2. One-dimensional mean-field approximation

To derive a mean-field description of the discrete model we
consider a discrete conservation statement describing the rate of
change of the occupancy status of site i. Accounting for all possible
motility, proliferation and death events we obtain

dCk
i

dt
¼ Pk

m

2
Ck
i�1ΦiþCk

iþ1Φi�Ck
iΦi�1�Ck

iΦiþ1

h i

þPk
p

2
Ck
i�1ΦiþCk

iþ1Φi

h i
�Pk

dC
k
i ; ð1Þ

for subpopulation kAfG;Bg, where Φi ¼ 1�P
KC

K
i is the probabil-

ity that site i is vacant. Since we interpret the product of site
occupation probabilities in Eq. (1) as a net transition probability
(Johnston et al., 2012), we explicitly assume that the occupancy
status of lattice sites are independent, which is equivalent to
neglecting the correlations in occupancy between lattice sites.
Extending this kind of mean-field conservation statement to apply
to our two-dimensional discrete model is straightforward, and the
details are given in the supplementary material document. Stan-
dard mean-field descriptions of our discrete model, given by Eq.
(1), can be re-written as a PDE description. To see this we expand
the Ck

i71 terms in Eq. (1) in a Taylor series about site i, neglecting
terms of OðΔ3Þ and smaller. After identifying Ci

k with a continuous
function Ckðx; tÞ, we can re-write the resulting expression as a
reaction–diffusion PDE for Ckðx; tÞ (Simpson et al., 2014).

2.3. One-dimensional moment dynamics approximation

Instead of treating products of site occupation probabilities as
independent quantities, we now consider the time evolution of the
relevant n-point distribution functions, ρðnÞ (Baker and Simpson,
2010). The one-point distribution function is given by ρð1ÞðσiÞ, where
σi denotes the state of site i and can be interpreted as the probability
that site i is in state σAf0;AG;ABg. We note that the possible states of
site i are (i) AiG, which indicates that site i is occupied by an agent
from subpopulation G, (ii) AiB, which indicates that site i is occupied

by an agent from subpopulation B, and (iii) 0i, which indicates
that site i is vacant (Baker and Simpson, 2010). The evolution of
the one-point distribution function for subpopulation k can be
described by accounting for all possible motility, proliferation and
death events,

dρð1ÞðAk
i Þ

dt
¼ Pk

m

2
ρð2ÞðAk

i�1;0iÞþρð2ÞðAk
iþ1;0iÞ�ρð2ÞðAk

i ;0i�1Þ�ρð2ÞðAk
i ;0iþ1Þ

h i

þPk
p

2
ρð2ÞðAk

i�1;0iÞþρð2ÞðAk
iþ1;0iÞ

h i
�Pk

dρ
ð1ÞðAk

i Þ: ð2Þ

The evolution of the one-point distribution functions depends on the
two-point distribution functions, which, in this case, means that the
evolution of the occupancy status of individual lattice sites depends
on the occupancy of nearest-neighbour lattice pairs. For example, the
average occupancy of site i increases due to the probability that site i
is unoccupied and site i�1 is occupied by subpopulation k. We
denote this probability, without the assumption that the occupancies
of sites i and i�1 are uncorrelated, by ρð2ÞðAk

i�1;0iÞ. To measure the
correlation between lattice sites i and m, separated by distance
rΔ¼ ðm� iÞΔ, we use the correlation function (Baker and Simpson,
2010)

Fa;bi ðrΔÞ ¼ ρð2Þðσi;σmÞ
ρð1ÞðσiÞρð1ÞðσmÞ

; ð3Þ

where a denotes the state of site i and b denotes the state of site m.
We note that Fa;bi ðrΔÞ depends on time. However, for notational
convenience, we do not explicitly include this dependence in our
notation. Employing the relationship (Baker and Simpson, 2010)

ρð1ÞðσiÞ ¼
X
σm

ρð2Þðσi;σmÞ; ð4Þ

we rewrite Eq. (2) in terms of the correlation functions. Here, for the
specific case where we consider two subpopulations, G and B, we
obtain

dCG
i

dt
¼ PG

m

2
CG
i�1þCG

iþ1�2CG
i þCB

i 2CG
i �CG

i�1F
G;B
i�1ðΔÞ�CG

iþ1F
B;G
i ðΔÞ

n oh

�CG
i 2CB

i �CB
i�1F

B;G
i�1ðΔÞ�CB

iþ1F
G;B
i ðΔÞ

n oi

þPG
p

2
CG
i�1 1�CG

i F
G;G
i�1ðΔÞ�CB

i F
G;B
i�1ðΔÞ

n oh
þCG

iþ1 1�CG
i F

G;G
i ðΔÞ�CB

i F
B;G
i ðΔÞ

n oi
�PG

dC
G
i : ð5Þ

Note that if the lattice sites are uncorrelated and hence Fa;bi ðrΔÞ � 1,
Eq. (5) is equivalent to Eq. (1). This simplification emphasises that the
key difference between the moment dynamics description and the
standard mean-field description is in the way that the two
approaches deal with the role of spatial correlation effects. We also
note that interchanging G and B in Eq. (5) allows us to write down a
similar expression for dCB

i =dt.
To solve Eq. (5) and the corresponding expression for dCB

i =dt,
we must develop a model for the evolution of FG;Gi ðΔÞ, FB;Bi ðΔÞ,
FG;Bi ðΔÞ and FB;Gi ðΔÞ. To achieve this we consider the evolution of
the relevant two-point distribution functions by considering how
potential motility, proliferation and death events alter each two-
point distribution function. Here we present details for the lattice
pair (i, iþ1), where both sites are occupied by subpopulation G.
The evolution of the corresponding two-point distribution func-
tion is given by

dρð2ÞðAG
i ;A

G
iþ1Þ

dt
¼ PG

m

2

h
ρð3ÞðAG

i�1;0i;A
G
iþ1Þþρð3ÞðAG

i ;0iþ1;A
G
iþ2Þ

�ρð3Þð0i�1;A
G
i ;A

G
iþ1Þ

�ρð3ÞðAG
i ;A

G
iþ1;0iþ2Þ

i
þPG

p

2

h
ρð3ÞðAG

i�1;0i;A
G
iþ1Þ

þρð3ÞðAG
i ;0iþ1;A

G
iþ2Þ

i
�2PG

dρ
ð2ÞðAG

i ;A
G
iþ1Þ: ð6Þ
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In general, the evolution of the n-point distribution function
depends on the (nþ1)-point distribution function. This results in
a system of equations, the size of which is equivalent to the
number of lattice sites, that describe the evolution of the n-point
distribution functions. The large number of lattice sites makes this
system of equations algebraically intractable, so to make progress
we truncate the system using a moment closure approximation
(Baker and Simpson, 2010). While several different types of mo-
ment closure approximations are available in the literature (Law
and Dieckmann, 2000), our previous experience with these kinds
of models indicates that the Kirkwood superposition approxima-
tion (KSA) (Singer, 2004) is a good option. Therefore, we apply the
KSA

ρð3Þðσi;σj;σkÞ ¼
ρð2Þðσi;σjÞρð2Þðσi;σkÞρð2Þðσj;σkÞ

ρð1ÞðσiÞρð1ÞðσjÞρð1ÞðσkÞ
; ð7Þ

to re-write the three-point distribution functions in Eq. (6) in
terms of two-point distribution functions. After using the KSA, we
rewrite Eq. (6) in terms of the correlation functions to obtain

dFG;Gi ðΔÞ
dt

¼ �FG;Gi ðΔÞ 1

CG
i

dCG
i

dt
þ 1

CG
iþ1

dCG
iþ1

dt
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þPG
m

2
CG
i�1

CG
i

FG;Gi�1ð2ΔÞþ
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"
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i ðΔÞ: ð8Þ

We observe that the right-hand side of Eq. (8) is undefined where
either CG

i ¼ 0 or CG
i þCB

i ¼ 1 and we discuss the subsequent
method of solution for the system of correlation functions in the
supplementary material document.

Eq. (8) shows that the evolution of nearest-neighbour correla-
tion functions, FG;Gi ðΔÞ, depends on the next nearest-neighbour
correlation function at rΔ¼ 2Δ. Therefore, to make progress we
must derive expressions for non-nearest-neighbour correlation
functions. To do this we consider the evolution of the correlation
function for an arbitrary lattice pair, separated by distance rΔ, and
the equations governing the evolution of the correlation function
for rΔ4Δ that are provided in the supplementary material
document. For ease of computation we assume that we have some
maximum correlation distance for which, when rΔ4rmaxΔ, we
have Fa;bi ðrΔÞ � 1 (Baker and Simpson, 2010). This means that the
occupancy status of lattice sites that are sufficiently far apart are
uncorrelated. For all one-dimensional results presented in this
document we set rmax ¼ 100 whereas for all two-dimensional
results we set rmax ¼ 5, and we find that the results of our moment
dynamics model are insensitive to further increases in rmax. The
complete system of governing equations for the one- and two-

dimensional correlation functions are given in the supplementary
material document.

3. Results

To investigate how the moment dynamics model performs
relative to the traditional mean-field model, described by Eq. (1),
we now consider two case studies motivated by the experiments
illustrated in Fig. 1. To compare the performance of the mean-field
and moment dynamics models, we calculate

E¼ 1
X

XX
i ¼ 1

Ĉ
k
i �Ck

i

� �2
" #1=2

; ð9Þ

where X is the number of lattice sites, Ĉ
k
i is the average density of

subpopulation k calculated using a large number of identically
prepared realisations of the discrete model and Ci

k is the associated
solution of the relevant continuum model. In particular, the
discrepancy between the averaged discrete results and the tradi-
tional mean-field model is denoted EMF, whereas the discrepancy
between the averaged discrete results and the moment dynamics
model is denoted EMD. In all cases we solve the governing system
of coupled ordinary differential equations using Matlab's ode45

function, which implements an adaptive fourth order Runge–Kutta
method (Shampine and Reichelt, 1997).

3.1. Case study 1: co-culture scratch assay

3.1.1. One-dimensional co-culture scratch assay
Co-culture scratch assays involve growing two cell cultures on a

culture plate, performing a scratch to reveal a vacant region and
observing how the population of cells then spreads in to the
initially vacant region (Oberringer et al., 2007; Walter et al., 2010).
While the scratch assay shown in Fig. 1(a)–(c) focuses on spread-
ing in one direction, we consider an initial condition which leads
to spreading in two directions:

CG
i ð0Þ ¼ CB

i ð0Þ ¼
ϵ; 1r io i1;

C0; i1r io i2;

ϵ; i2r irX;

8><
>: ð10Þ

where ϵ{1 to allow for the possibility of some material remaining
after the scratch has been made. This initial condition corresponds
to both subpopulations being placed, evenly distributed, at the
same density, in the region i1o io i2. Since the cells are located at
random we have Fa;bi ðrÞ � 1 at t¼0.

Representative snapshots from the discrete model at t¼0, t¼100
and t¼200 are presented in Fig. 2(a)–(c), respectively. While the
discrete model is one-dimensional, we show 20 identically prepared
realisations of the model adjacent to each other in Fig. 2(a)–(c).
Reporting the results of the stochastic model in this way gives us a
visual indication of the degree of stochasticity in the model. Com-
paring the spatial distributions of agents at t¼100 and t¼200
indicates that the more motile blue subpopulation spreads further
from the initial condition than the less motile green subpopulation.

The corresponding averaged density profiles, obtained by con-
sidering a large number of identically prepared realisations from the
discrete model, are superimposed on the relevant solutions of the
mean-field and moment dynamics model for both subpopulations in
Fig. 2(d)–(e), respectively, at t¼100. We immediately observe that
the traditional mean-field model predicts qualitatively different
behaviour to the averaged discrete model. To demonstrate this we
plot the difference between the density of the two subpopulations,
Di ¼ CB

i �CG
i , in Fig. 2(f). For the averaged discrete density data Di is

predominantly non-negative, whereas the traditional mean-field
approach predicts that Dio0 for a significant portion of the domain.
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In contrast, the moment dynamics model predicts the same qualita-
tive behaviour as the averaged discrete model. The moment dyn-
amics model provides a closer match to the averaged discrete data
(EMD ¼ 5:62� 10�3 for subpopulation B and 7:67� 10�3 for sub-
population G) than the traditional mean-field approach (EMF ¼
2:38� 10�2 for subpopulation B and 5:43� 10�2 for subpopulation
G). An equivalent comparison between the averaged discrete data
and the solutions of the traditional mean-field and moment dyna-
mics models at t¼200 is given in Fig. 2(g)–(i). Again, we observe that
the traditional mean-field model predicts qualitatively different beh-
aviour to the averaged discrete data, whereas the moment dynamics
model provides a reasonable description of the averaged discrete
data.

Since the key difference between the derivation of the mean-field
model and the moment dynamics model is in the neglect of corr-
elation effects, it is instructive to examine the magnitude of these
differences. We can explore these differences since our numerical
solution of the moment dynamics model produces estimates of
FG;Gi ðrΔÞ, FB;Bi ðrΔÞ, FG;Bi ðrΔÞ and FB;Gi ðrΔÞ for ΔrrΔrrmaxΔ. Solution
profiles showing FG;Gi ðrΔÞ, FB;Bi ðrΔÞ, FG;Bi ðrΔÞ and FB;Gi ðrΔÞ are given in
the supplementary material document. Given that the mean-field
model implicitly assumes that Fa;bi ðrΔÞ � 1 and that our solution
profiles for FG;Gi ðrΔÞ, FB;Bi ðrΔÞ, FG;Bi ðrΔÞ and FB;Gi ðrΔÞ indicate that the
correlation function is, at times, up to five orders of magnitude
greater than unity, it is not surprising that the traditional mean-field
model performs relatively poorly in this case.

The results in Fig. 2 correspond to one particular choice of the
initial cell density in the scratch assay, and we now examine the
sensitivity of the performance of the traditional mean-field model

relative to the moment dynamics model by decreasing C0, the initial
density of the cell monolayer. We are interested to examine this
sensitivity to initial density since previous studies have identified
the initial density as playing a key role in the performance of these
kinds of models (Baker and Simpson, 2010; Markham et al., 2013).
Results in Fig. 3 are similar to those in Fig. 2 except that we consider
a much lower initial density of cells by setting C0 ¼ 0:1 in Eq. (10). In
general, we observe that the blue subpopulation in the discrete
model moves further away from the initial condition with time than
the green subpopulation, as shown in Fig. 3(a)–(c). Similar to the
results in Fig. 2, the results in Fig. 3(d)–(i) show that the traditional
mean-field model predicts qualitatively different behaviour than the
averaged discrete density data in certain regions of the domain,
while the moment dynamics model accurately captures the quali-
tative trends observed in the averaged discrete data. The details of
the correlation functions for this problem are given in the supple-
mentary material document.

To further investigate the performance of the moment dynamics
model we now summarise results for a wider range of parameter
combinations. Since the moment dynamics model requires addi-
tional effort to derive and solve compared to the traditional mean-
field description, it is of interest to use our model to identify which
particular parameter regimes require the application of a moment
dynamics model, and which particular parameter regimes can be
studied using the simpler traditional mean-field approach. Results in
Table 1 describe the performance of the moment dynamics and
traditional mean-field models for the same problem we considered
in Fig. 2. Using criteria based on Eq. (9), we conclude that the
moment dynamics model outperforms the traditional mean-field
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Fig. 2. One-dimensional model of a co-culture scratch assay. Snapshots of 20 identically prepared realisations of the discrete model at (a) t¼0, (b) t¼100 and (c) t¼200.
Comparison of the averaged discrete model (purple), traditional mean-field solution (light blue) and moment dynamics solution (blue) for cell subpopulation B at (d) t¼100
and (g) t¼200. Comparison of the averaged discrete model (dark green), traditional mean-field solution (light green) and moment dynamics solution (green) for cell
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moment dynamics solution (brown) describing the difference in density, D¼ CB�CG , at (f) t¼100 and (i) t¼200. Parameters are PG

m ¼ 0:1, PB
m ¼ 1, PG

p ¼ PB
p ¼ 0:05,

PG
d ¼ PB

d ¼ 0:02, rmax ¼ 100, C0 ¼ 0:5, ϵ¼ 10�8, i1 ¼ 81, i2 ¼ 121, X¼200, Δ¼ 1. Averaged data from the discrete model corresponds to M¼ 104 identically prepared
realisations. In (d)–(i) the dashed lines correspond to initial condition, and the discrepancy between the averaged discrete density data and the solution of the traditional
mean-field and the moment dynamics models, EMF and EMD, respectively, are given. (For interpretation of the references to colour in this figure caption, the reader is referred
to the web version of this paper.)
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description across a large range of parameter combinations. In
particular, we observe that the traditional mean-field model fails to
describe the average behaviour of the discrete model whenever
proliferation is significant, that is, where the proliferation rate is not
significantly smaller than the motility rate. We observe that if, for
both subpopulations, Ppk is small compared to Pm

k , then the mean-field
model describes the averaged discrete model well for both subpo-
pulations. While the mean-field model is appropriate in certain
parameter regimes, the moment dynamics model always provides
an improved match to the averaged discrete density data.

3.1.2. Two-dimensional co-culture stencil assay
We now present results for a two-dimensional extension of the

model considered in Section 3.1.1. While we motivated the geometry

of our simulations in Section 3.1.1 by considering a scratch assay, we
note that there are several other types of in vitro assays, such as
barrier assays (Simpson et al., 2013) or stencil assays (Kroening and
Goppelt-Struebe, 2010; Riahi et al., 2012), that involve an initially
confined population of cells which spread in two dimensions. The
details of the equations governing the two-dimensional moment
dynamics model are given in the supplementary material document.
We apply our model to a square stencil assay, where cells are grown
initially inside a square stencil. The assay is initiated by removing the
stencil and allowing the cells to spread into the area surrounding the
initially confined population of cells. We model this process using an
initial condition given by

CG
ði;jÞð0Þ ¼ CB

ði;jÞð0Þ ¼
C0; i1r io i2; j1r jo j2;

ϵ elsewhere:

�
ð11Þ
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Fig. 3. One-dimensional model of a co-culture scratch assay. Snapshots of twenty identically prepared realisations of the discrete model at (a) t¼0, (b) t¼100 and (c) t¼200.
Comparison of the averaged discrete model (purple), traditional mean-field solution (light blue) and moment dynamics solution (blue) for subpopulation B at (d) t¼100 and
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m ¼ 0:1, PB
m ¼ 1, PG

p ¼ PB
p ¼ 0:05, PG

d ¼ PB
d ¼ 0:02, rmax ¼ 100,

C0 ¼ 0:1, ϵ¼ 10�8, i1 ¼ 81, i2 ¼ 121, X¼200, Δ¼ 1. Averaged data from the discrete model corresponds toM ¼ 104 identically prepared realisations. In (d)–(i) the dashed lines
correspond to initial condition, and the discrepancy between the averaged discrete density data and the solution of the traditional mean-field and the moment dynamics
models, EMF and EMD, respectively, are given. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)

Table 1
Parameter ratios and the validity of both the mean-field and moment dynamics models for describing the averaged discrete model for those parameter ratios and the cell co-

culture scratch assay initial condition. Large indicates 101 or higher, intermediate indicates 5� 10�2–5� 100, small indicates less than 10�2. X denotes a model that is
inappropriate for the corresponding parameter ratio while Xn denotes a model that provides an accurate prediction for one subpopulation, but not both. The tick symbol
denotes a model that provides a prediction that matches the averaged discrete model well.

PB
m=P

G
m PB

p=P
G
p PB

d=P
G
d PB

p=P
B
m PG

p =P
G
m PB

d=P
B
p PG

d=P
G
p

Mean-field Corrected mean-field

Large Intermediate Intermediate Intermediate Intermediate Intermediate Intermediate X ✓

Intermediate Intermediate Intermediate Intermediate Intermediate Intermediate Large Xn ✓

Large Large Intermediate Small Small Intermediate Large ✓ ✓

Intermediate Intermediate Large Intermediate Intermediate Intermediate Small Xn ✓

Intermediate Intermediate Intermediate Small Small Large Large ✓ ✓

Intermediate Intermediate Intermediate Large Large Intermediate Intermediate X ✓

Large Intermediate Intermediate Small Large Intermediate Intermediate Xn ✓
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Again, we make the assumption that both cell subpopulations are
initially present at the same density, such as the traditional mean-
field initial condition shown in Fig. 4(a) with both subpopulations
present with C0 ¼ 0:1 inside the square stencil. The discrete analogue
of this initial condition for a single realisation of the discrete model is
presented in Fig. 4(b). We allow the discrete model to evolve until
t¼100, and present a snapshot of the results in Fig. 4(c). In the two-
dimensional setting we observe the formation of clustering, particu-
larly in the less motile G subpopulation. This kind of clustering is

frequently observed in many different experimental situations, such
as in Fig. 1(c).

We perform many identically prepared realisations of the discrete
model and present the average density distributions, for both
subpopulation B and subpopulation G, in Fig. 4(d) and (e), respec-
tively. As we might expect, the more motile subpopulation B spreads
further away from the location of the initial condition than sub-
population G. Interestingly, although both cell subpopulations have
the same rates of proliferation and death, subpopulation B has a
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rmax ¼ 5, C0 ¼ 0:1, ϵ¼ 10�8, i1 ¼ j1 ¼ 81, i2 ¼ j2 ¼ 121, X ¼ Y ¼ 50. Difference, given by Eq. (9), between the mean-field solution and the averaged discrete model: 1:57� 10�2
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S.T. Johnston et al. / Journal of Theoretical Biology 370 (2015) 81–92 87



higher maximum density. The difference between the density of the
two subpopulations is reported in Fig. 4(f) and we observe that, aside
from minor fluctuations, we have CB

ði;jÞ4CG
ði;jÞ across the domain. It is

instructive to examine whether this qualitative behaviour is captured
by the traditional mean-field and moment dynamics models. The
traditional mean-field solutions for subpopulations B and G, pre-
sented in Fig. 4(g) and (h), respectively, exhibit higher cell density
than the averaged discrete data. In particular, according to the
traditional mean-field model, subpopulation G has a maximum den-
sity of approximately 0.25 whereas the maximum density according
to the averaged data from the discrete model is approximately 0.15.
The difference between the density of the two subpopulations
according to the traditional mean-field model, given in Fig. 4(i),
predicts that CG

ði;jÞ4CB
ði;jÞ in large parts of the domain, which is pre-

cisely the opposite of what we observe in the averaged discrete data.
To investigate whether including spatial correlation addresses

the limitations of the traditional mean-field model, we compare the
predictions of our moment dynamics model with the averaged
discrete model. We note that, in the two-dimensional case, lattice
sites separated in both the x and y directions can be correlated and
that the maximum separation in both the x and y directions is
denoted by rmax. The relevant solution of the moment dynamics
model is presented in Fig. 4(j) and (k) for subpopulations B and G,
respectively. Visually, we observe that the moment dynamics model
matches the averaged discrete data far better than the solution of
the traditional mean-field model. Indeed, measuring the difference
between the solution of the moment dynamics model and the
averaged discrete data leads to estimates of EMD that are approxi-
mately one order of magnitude lower than estimates of EMF.

3.2. Case study 2: invasion of one subpopulation into another
subpopulation

Cell invasion occurs when one cell subpopulation moves through
a distinct background cell subpopulation, such as tumour cells
spreading through the stroma (Bhowmick and Moses, 2005). To
model this kind of process we assume that the background cell
subpopulation is initially spatially uniform and can be modelled as a
one-dimensional process. Therefore, we assume that one cell sub-
population, CiG, is uniformly distributed at some initial density, C0G,
while the other cell subpopulation is initially confined, so that we
can mimic the kind of geometry we see in Fig. 1(d). To achieve this
we set

CG
i ð0Þ ¼ CG

0 ; 1r irX;

CB
i ð0Þ ¼

ϵ; 1r io i1;

CB
0; i1r io i2;

ϵ; i2r irX;

8><
>: ð12Þ

as the initial condition, where ϵ{1.
Twenty identically prepared realisations of the one-dimensional

discrete model, at t¼0, t¼100 and t¼200, are presented in Figs. 5(a)–
(c) and 6(a)–(c), respectively. The difference between Figs. 5 and 6 is in
the choice of parameters. In summary, subpopulation B is more motile
than subpopulation G in Fig. 5, whereas subpopulation G is more
motile than subpopulation B in Fig. 6. We compare the relative
performance of the traditional mean-field and moment dynamics
models for the relevant parameter choices in Figs. 5(d)–(f) and 6(d)–
(f) at t¼100, and in Figs. 5(g)–(i) and 6(g)–(i) at t¼200. In general, we
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t¼200. Comparison of the averaged discrete model (dark green), corresponding mean-field solution (light green) and moment dynamics solution (green) for cell
subpopulation G at (e) t¼100 and (h) t¼200. Comparison of the averaged discrete model (dark brown), corresponding mean-field solution (light brown) and moment
dynamics solution (brown) for the difference in cell subpopulations D¼ CB�CG at (f) t¼100 and (i) t¼200. Parameters are PG

m ¼ 0:1, PB
m ¼ 1, PG

p ¼ PB
p ¼ 0:05, PG

d ¼ PB
d ¼ 0:02,

rmax ¼ 100, CG
0 ¼ CB
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observe that the solution of the moment dynamics model provides an
improved match to the averaged discrete data relative to the solution
of the traditional mean-field model for both parameter choices. In
particular, the solution of the moment dynamics model provides an
improved approximation of the averaged density from the discrete
model at the low density leading edge of the invading subpopulation
in Fig. 5 where PB

m4PG
m. This improvement offered by the moment

dynamics model at the leading edge of the spreading population is of
particular interest when considering surgical removal of tumours
where it is essential to have a good understanding of the location of
the leading edge of the spreading subpopulation (Beets-Tan et al.,
2001; Swan, 1975).

To examine the role of initial cell density we present an
additional set of results in Fig. 7 where we have reduced the initial
cell density. The additional results in Fig. 7 involve the same initial
conditions, given by Eq. (12), except that we set CG

0 ¼ CB
0 ¼ 0:1. Since

the background density has been decreased, we observe that the
invading subpopulation spreads further in Fig. 7 than in the
corresponding situations presented in Figs. 5 and 6. It is interesting
that both the solutions of the mean-field and moment dynamics
models are less accurate in describing the density of the background
subpopulation for the lower density initial condition.

To provide more comprehensive insight into the relative per-
formance of the moment dynamics model we also examine the
match between the average density data and the solution of the
traditional mean-field and the moment dynamics models over a
range of parameter combinations. The results of this comparison
are summarised in Table 2, where we see that the solution of the

moment dynamics model matches the averaged density data from
the discrete model better than the corresponding solution of the
traditional mean-field model in each parameter regime consid-
ered. We also observe that the traditional mean-field model is
appropriate for situations where the proliferation rate is small
relative to the motility rate.

4. Discussion and conclusions

In this work we have considered developing mathematical models
which describe the motion of populations containing distinct sub-
populations. These kinds of processes are relevant to a range of
biological and ecological applications including malignant spreading
(Sherratt, 2000), wound healing (Sherratt and Murray, 1990) and the
spread of invasive species (Hastings et al., 2005). Previous models of
these processes typically focus on population-level PDE descript-
ions that neglect to explicitly account for individual-level behaviour
(Gatenby and Gawlinski, 1996; Painter and Sherratt, 2003; Sherratt,
2000; Smallbone et al., 2005). To partly address this limitation, other
researchers use discrete mathematical models in conjunction with the
associated population-level PDE description which is derived from the
underlying stochastic process by invoking a mean-field approximation
(Khain et al., 2012; Simpson et al., 2010). While averaged density data
from these kinds of stochastic models is known to match the solution
of the associated mean-field PDE approximation in certain parameter
regimes, it is well-known that mean-field PDE descriptions fail to
match average density information from the stochastic process for
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Fig. 6. One-dimensional model of cell invasion. Snapshots of 20 identically prepared realisations of the discrete model at (a) t¼0, (b) t¼100 and (c) t¼200. Comparison of
the averaged discrete model (purple), corresponding mean-field solution (light blue) and moment dynamics solution (blue) for cell subpopulation B at (d) t¼100 and (g)
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p ¼ 0:05, PG

d ¼ PB
d ¼ 0:02,

rmax ¼ 100, CG
0 ¼ CB

0 ¼ 0:5, ϵ¼ 10�8, i1 ¼ 81, i2 ¼ 121, X¼200, Δ¼ 1. Averaged data from the discrete model corresponds to M ¼ 104 identically prepared realisations. In (d)–
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parameter combinations where the discrete model leads to significant
correlation and clustering effects (Baker and Simpson, 2010).

Our study, in which we derive new moment dynamics models
governing the motion of cell populations composed of interacting sub-
populations, offers two improvements on previous approaches. First,
our moment dynamics model approximately incorporates clustering
and correlation, which are implicitly neglected in previous PDE-based

descriptions. This is important since clustering and correlation effects
are often observed in cell biology experiments (Treloar et al., 2014). We
note that the clustering incorporated is not due to explicit cell-to-cell
adhesion but from the nature of the proliferation mechanism. Second,
our moment dynamics model is more computationally efficient to
implement than using a large number of repeated stochastic realisa-
tions of the discrete model. By presenting a thorough comparison of
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p ¼ 0:05, PG

d ¼ PB
d ¼ 0:02.

Parameter regime two used PG
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d ¼ 0:02. Averaged data from the discrete model corresponds to M¼ 104 identically prepared realisations.
In (a)–(l) the dashed lines correspond to initial condition, and the discrepancy between the averaged discrete density data and the solution of the traditional mean-field and
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the performance of a traditional mean-field model and the new
moment dynamics model for two case studies we are able to summ-
arise some of the general features of our model. While we always find
that the moment dynamics model produces a more accurate descrip-
tion of the entire cell density profile than the traditional mean-field
model, we also find that certain features of the processes are reliably
predicted by the traditional mean-field framework.

There are several ways that our work could be extended. In all
cases we always assume that the influence of cell-to-cell adhesion
and cell-to-substrate adhesion is negligible. While these assump-
tions are relevant for certain types of cells, it is well known that
other types of cells, such as glioma and melanoma, exhibit sign-
ificant adhesion (Khain et al., 2012; Treloar and Simpson, 2013;
Treloar et al., 2014). Therefore, it is of interest to examine how to
incorporate the effects of cell-to-cell adhesion and cell-to-
substrate adhesion in our moment dynamics framework. In this
work we have only considered cell biology as an application of this
framework. Future applications of this framework could include
chemical kinetics (Singh and Hespanha, 2011) and predator–prey
interactions (Murrell, 2005). A further extension would be to
consider an off-lattice discrete process, such as the model pre-
sented by Middleton et al. (2014). Given that off-lattice discrete
models are far more computationally expensive than lattice-based
discrete models, the need for efficient and accurate mean-field
descriptions of these processes is even more significant for off-
lattice models than for lattice-based models. We leave these exte-
nsions for future analysis.
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