Journal of Theoretical Biology 353 (2014) 95-103

Contents lists available at ScienceDirect

Journal of Theoretical Biology

journal homepage: www.elsevier.com/locate/yjtbi

Comparing methods for modelling spreading cell fronts

CrossMark

Deborah C. Markham ** Matthew J. Simpson ”, Philip K. Maini?,
Eamonn A. Gaffney®, Ruth E. Baker*

2 Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, United Kingdom
> Mathematical Sciences, Queensland University of Technology, Brishane, Australia

AUTHOR-HIGHLIGHTS

e We examine three different methods for modelling spreading cell fronts.

e We compare these methods to results from averaged discrete simulations.

e The transient and the asymptotic behaviour are both taken into account.

e We deduce which methods are best suited to specific parameter regimes.

e We discuss examples of which methods may be suitable for some biological phenomena.

ARTICLE INFO

ABSTRACT

Article history:

Received 22 November 2013
Received in revised form

14 January 2014

Accepted 18 February 2014
Available online 12 March 2014

Keywords:
Travelling front
Cell migration
Cell proliferation
Cancer

Wound healing

Spreading cell fronts play an essential role in many physiological processes. Classically, models of this
process are based on the Fisher-Kolmogorov equation; however, such continuum representations are
not always suitable as they do not explicitly represent behaviour at the level of individual cells.
Additionally, many models examine only the large time asymptotic behaviour, where a travelling wave
front with a constant speed has been established. Many experiments, such as a scratch assay, never
display this asymptotic behaviour, and in these cases the transient behaviour must be taken into
account. We examine the transient and the asymptotic behaviour of moving cell fronts using techniques
that go beyond the continuum approximation via a volume-excluding birth-migration process on a
regular one-dimensional lattice. We approximate the averaged discrete results using three methods:
(i) mean-field, (ii) pair-wise, and (iii) one-hole approximations. We discuss the performance of these
methods, in comparison to the averaged discrete results, for a range of parameter space, examining
both the transient and asymptotic behaviours. The one-hole approximation, based on techniques from
statistical physics, is not capable of predicting transient behaviour but provides excellent agreement
with the asymptotic behaviour of the averaged discrete results, provided that cells are proliferating
fast enough relative to their rate of migration. The mean-field and pair-wise approximations give
indistinguishable asymptotic results, which agree with the averaged discrete results when cells are
migrating much more rapidly than they are proliferating. The pair-wise approximation performs better
in the transient region than does the mean-field, despite having the same asymptotic behaviour.
Our results show that each approximation only works in specific situations, thus we must be careful to
use a suitable approximation for a given system, otherwise inaccurate predictions could be made.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Green, 1963; Simpson et al., 2013b). This phenomenon is essential
in many physiological processes: embryonic development hinges

Advancing fronts of cells are frequently observed experimen-
tally (Simpson et al, 2007b, 2013b; Maini et al, 2004a,b).
For example, in Fig. 1, we see an advancing front of murine
fibroblast 3T3 cells from an in vitro experiment (Todaro and
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on the spatial advancement of cells (Simpson et al., 2007b),
and wounds could not heal without it (Maini et al, 2004a,b).
Additionally, it is important in tissue engineering (Sengers et al.,
2007, 2009), which relies on the ability of fronts of cells to move
into empty space. Less desirably, moving fronts of cells are a major
factor in disease progression, most notably in cancer (Allred, 2010;
Swanson et al., 2003; Gatenby and Gawlinski, 1996). An important
clinical feature is the sharpness of the front, which is determined
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Fig. 1. Experimentally observed moving front of murine fibroblast cells. In (a) we see a snapshot of the cells invading the space to the right, whilst in (b), we see the
highlighted region from (a) where the cell nuclei have been stained. In (c¢), we have the calculated density profile showing the shape of the front. The experimental details for

producing images such as these can be found in Simpson et al. (2013b).

by the relative rates of migration and proliferation; a shallow front
can lead to difficulties when surgically removing a tumour
(Swanson et al,, 2003). Given their importance biologically, it is
hardly surprising that moving cell fronts have been the focus of
many mathematical modelling studies.

Classically, advancing fronts of cells have been modelled using
the Fisher-Kolmogorov equation (Fisher, 1937; Kolmogorov et al.,
1937), which has a travelling wave solution with constant shape
and speed. The asymptotic wave speed (as t—o0), vy for initial
conditions with compact support is 2+/DA where D is the diffu-
sivity of the cells, and A their effective proliferation rate (Murray,
2002). Measuring the wavespeed experimentally does not allow us
to determine unique values for D and A, making additional
experimental observations necessary (Simpson et al., 2013b;
Sengers et al., 2007). Moreover, even once the travelling wave
has been established, the Fisher-Kolmogorov equation, which
represents the mean-field behaviour, is not always an accurate
representation of the behaviour of a moving front of cells, due to
the stochastic nature of these processes (Lewis, 2000; Khain et al.,
2011). Thus, whilst it may be possible to fit experimental data to
solutions of the Fisher-Kolmogorov model, this does not necessa-
rily lead to accurate parameter estimation; something that is
frequently overlooked in models of moving cell fronts (Sengers
et al,, 2007; Tremel et al., 2009). This has led to the development
of alternative methods for modelling moving cell fronts, some of
which we shall now discuss.

Using agent-based models, each cell is modelled explicitly thus
retaining a description of the individual behaviour whilst still
enabling observation of the population as a whole (Codling et al.,
2008). Discrete models have been used to examine moving cell
fronts in many areas of cell biology (Cheng et al., 2006; Dormann
and Deutsch, 2002; Mani et al., 2002). They are also often used
in conjunction with continuum models to provide a multiscale
modelling framework (Simpson et al., 2007a). Discrete models are
not confined to any particular region of parameter space, but are
limited by their computational cost, and lack of analytical tract-
ability. Thus, ideally, we would like to have simpler, more tractable
methods approximating the behaviour of moving cell fronts.

When cells proliferate significantly more rapidly than they
migrate, we expect a sharp front (Swanson et al., 2003) with the
region behind the front almost completely filled with cells. Under
these conditions, we are able to predict the asymptotic front speed
using the one-hole approximation (OHA) (Callaghan et al., 2006).
This method uses series expansions to provide a correction term to
the front speed for the case without migration, which can be
calculated exactly. The OHA agrees well with discrete simulations
when cells proliferate significantly faster than they migrate, and
can be extended to deal with more than one hole behind the front.

However, the method of Callaghan et al. (2006) is only given for
constrained systems where a cell either attempts to move or
proliferate at every time step, without ever resting. Additionally,
experimental results do not always produce the asymptotic
travelling front behaviour. The following three assays highlight
some of the different experiments which can be used to obtain
data for travelling fronts:

1. A single moving front is allowed to develop over a long period
of time ( > 100 h) (Maini et al., 2004a,b). These experiments are
likely to allow for travelling front behaviour to be produced.
However, they are not as straightforward to carry out as the
same experiment over shorter timescales due to difficulties
with keeping the cells alive for long periods of time, and
maintaining a constant environment.

2. A single moving front is allowed to develop over a short period
of time (<24 h). The results of these experiments are not
on long enough timescales to produce asymptotic travelling
front behaviour (Sengers et al., 2009), but are more feasible
experimentally.

3. Two opposingly directed fronts come together. For instance,
when a thin strip (Liang et al., 2007; Valster et al., 2005;
Rodriguez et al., 2005; Young et al., 2012) or small hole (Young
et al., 2012) of cells is removed from a monolayer. In this set-up,
the artificially created gap is closed, thus the system may never
reach the asymptotic travelling front speed. For example, the
protocol in Liang et al. (2007) allows between 8 and 18 h for the
scratch to close. Given that typical cell doubling times are of a
similar order, we do not expect the asymptotic speed to have
been reached before the fronts from either side of the scratch
become interwoven. We see an example of this in Fig. 2, where
a scratch assay is performed with 3T3 cells. Within 30 h, we see
the two fronts meeting.

As many experiments follow the second and third methods, it is
often important to be able to predict the transient behaviour as
well as the asymptotic speed.

Moment dynamics models incorporate increasingly greater
degrees of information into the mean-field model by taking into
account the dynamics of cell pairs, triplets, and so forth. Pairwise
models are generally the most common, requiring the use of
an appropriate closure approximation for any triplet terms in the
model (Dieckmann and Law, 2000). The use of moment dynamics
models has been well documented in various biological scenarios
(Baker and Simpson, 2010; Simpson and Baker, 2011; Ascolani
et al,, 2013; Law et al., 2003; Murrell et al., 2004; Sharkey, 2011).
Specifically, Simpson and Baker (2011) develop a pairwise approx-
imation (PWA), using the Kirkwood Superposition Approximation
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Fig. 2. Experimental results of a scratch assay with 3T3 cells. We see that no travelling front is established, as the two fronts quickly collide as they approach from either side
of the gap. The white bar corresponds to 250 pum. The arrows give an approximate indication of the width of the scratch at each time point. In Figure (d) there is no arrow as
the two fronts have begun to meet in places. (a) t=0h, (b) t=10h, (c) t=20h and (d) t=30h.

(KSA) (Kirkwood, 1935; Kirkwood and Boggs, 1942) as their
closure, to describe the behaviour of a moving front. Their work
allows the transient behaviour to be examined, shows improve-
ment on the mean-field approximation (MFA), and demonstrates
the importance of including spatial correlations in a traditional
mean-field model.

In this paper, we examine different methods in detail for a
range of proliferation and migration parameters in comparison
with averaged discrete results, and discuss which methods are
best suited to a given parameter regime and experimental time-
scale. We begin with a description of the Gillespie algorithm used
to produce the averaged discrete results. We then discuss the three
methods used to approximate the averaged discrete results: the
MFA, the PWA, and the OHA. Next, we present results focussing on
the transient behaviour, evaluating the relative performance of
each method. Following this, we turn to the asymptotic results and
examine the methods in a range of parameter space. We conclude
by discussing the strengths and weaknesses of the methods in
question, and which methods might best suit some specific
experimental examples.

2. The methods

In this section we discuss the methods used to model our
system. We consider a one-dimensional (1D), volume-excluding
process on a regular lattice with a lattice spacing of A=1.
Cells move to neighbouring sites at a rate P, per unit time and
proliferate at a rate P, per unit time.

2.1. The discrete case
For our discrete simulations we have a 1D lattice with N=2000

sites, and we conduct 10,000 individual realisations to estimate
the averaged behaviour. Initially, the Ith lattice site is occupied

with probability

1, 1<l<x,
[-x
C = 1—{m}, x<1<100, 2.1)
0, 100 <I<N,

where we can alter the steepness of our initial ramp by varying x.
We use a Gillespie algorithm to update our system (Baker and
Simpson, 2010), the algorithm for this being as follows:

1. Set t=0.

2. Initialize the lattice by generating a uniform random number, r;,
in the interval [0,1], for each lattice site. If r; < C;, an agent is
placed at that lattice site.

3. With Q(t) being the total number of agents on the lattice,
calculate the total propensity function, ap = (Pm+Pp)Q(t).

4. Calculate the time, 7, to the next event using 7 = (1/ap) log (1/r1),
where r; is a uniform random number in the interval [0,1].

5. Decide which event occurs by calculating R = agr,, where 15 is
another uniform random number in the interval [0,1]. R is used
to deduce which event occurs according to the following:

e If Re[0,P,Q(t)), a movement event will occur. An agent is
chosen at random, and one of its neighbours is also chosen
at random as the target site for a movement event. If the
target site is empty, the chosen agent moves to that site,
otherwise the event is aborted.

o If Re [PnQ(t), (Pm+Pp)Q(t)], a proliferation event will occur.
An agent is chosen at random, and one of its neighbours is
also chosen at random as the target site for a proliferation
event. If the target site is empty, a daughter cell is placed in
it, otherwise the event is aborted.

6. Update Q(t) depending on which event, if any, occurred.

7. Update time by setting t—t+7.

8. Repeat from step 3 until the stipulated final time is reached.
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We apply reflecting boundary conditions at [=1 and [=N.
To determine the front speed, v, we track the location where the
averaged cell density is 0.5, and calculate the average velocity from
this information. Once v is no longer changing with time, we have
reached the asymptotic travelling front speed, vy

2.2. The mean-field approximation

To derive the MFA we consider the occupancy of each site of the
lattice. The average occupancy of the Ith lattice site is given by
C, €[0, 1]. We use k-point distribution functions, p®, to derive the
MFA and the PWA. The k-point distribution functions describe the
probability that k-tuplets of sites have given occupancies. The one-
point distribution function, p(, gives the averaged occupancy of
the site in question. Thus we have

pPAY=C,. 22)

pP(O)=1-C, 2.3)

where A; and 0, indicate that site [ is occupied by A or unoccupied,
respectively. To provide a measure of the occupancy dependence
of two given sites we use correlation functions, (Mai et al., 1993,
Mai, 1994, Baker and Simpson, 2010):

_ p(o,om)

~pD(eppD(om)
where the state of the site is given by ¢, which is either 0 or A.
If lattice site occupancies are independent, we have F, ;. (L, m)=1.

Correlation functions can be related by using conservation expres-
sions. For example, we can write the conservation equation as

PPALAR) +p? (AL Om) = p PV (A). (2.5)

Fg,.6, (L, m): (2.4)

Using the definition of a correlation function, we have
CiCmFaall,m)+C(1—Cp)Fap(l,m)=Cy, (2.6)
and thus we can express one correlation function in terms of
another:
1—CnFaa(l,m)
1-Cn ’
We now turn to the evolution of the 1-point distribution func-
tions:

dpVA) _Pn
. — 2

FA,()(I, m) = (27)

PPAI1.0)+pPOL A1) — pP(AL O 1) — pP(0,_1.A)]

movement in and out of site [

P
+7p [P?A1-1,00+p (O, AL 1)) (2.8)

proliferation into site |

We rewrite Eq. (2.8) using the correlation functions and conserva-
tion equations to obtain
dC; Pn

E_T[C’” —2C+Cryq]

+%{C,71[1 —CF(LI=-D]+Cpy1[1-CF(L I+ 1)}, (2.9)

where we have set F4 4 = F for notational simplicity. We note that
the movement term does not depend on correlations, as all
correlation-containing terms cancel (Simpson and Baker, 2011).
For the standard MFA, we assume that lattice site occupancies are
independent, thus F(,m)=1 for all [, m. Therefore, we have the
following equation for the evolution of the density of a given
lattice site:

dc, P P,
—’—%”[C,q 72C1+C1+1]+7p[czf1 +Crll1-C.

= (2.10)

To make predictions using the MFA, we solve the system given
by Eq. (2.10) numerically using a fourth order Runge-Kutta
method (RK4) (Press et al., 2007) with a constant time-step of
6t =0.1. Smaller timesteps were tested to confirm this was an
appropriate choice. We calculate v and vy in the same manner as
in our discrete model, whereby we track the location of C;=0.5.
We have reflecting boundary conditions and initial conditions of
the form of Eq. (2.1).

2.3. Pair-wise approximation

For the PWA, we no longer make the usual assumption that the
occupancies of pairs of sites are independent, thus we do not set
F(,m)=1 in Eq. (2.9). To determine the evolution of our correla-
tion functions, we turn to the 2-point distribution functions. First
we consider where the two sites in question are nearest neigh-
bours:

dp?(ALAI 1) _ Pm

dr 5 PPA1.0L AL D) +PP(AL 0L 1, AL )]

movement into sites [ and [+1

P
—Tm P01, ALAL D+PPALA L 1,0112)]

movement out of sites [ and [+1

P
+3p PPA1.0LAL 1) +PP(AL 0L 1, AL )]

proliferation from neighbours

p
+5 PP OL AL D +PP (AL 0] .11

proliferation from each other

Next, we consider the evolution of the 2-point distribution
function where the two sites in question are not nearest neigh-
bours, thus |[—m| > 1:

dp® (A1, An) Py

it — PP AL 1.0 An) + PP 0L AL 1. An)]

movement into site [

P,
=5 [PP01_1. AL An) +pP (AL 011 1. Am)]

movement out of site |

P
+5 PP AL A1, 0m)+ PP (AL O, A 1)]

movement into site m

P
=5 [PP(A1 O 1. Am) + 9P (A, Am. O 1)]

movement out of site m

P
+5 [PPAL1. 01 An) +pP 0L Al 1. An)]

proliferation into site |

P
+5 (PP AL AR 1.0m)+ PP AL O A1) (212)

proliferation into site m

In Egs. (2.11) and (2.12), we use conservation expressions for
the 3-point distribution functions, (Baker and Simpson, 2010,
Simpson and Baker, 2011, Markham et al., 2013), to eliminate
some of the terms. Where this is not possible, we close using the
KSA, which is given by the following equation:

P01, 0m)p? (61, 0n)pP(Om, n)
PD(@pD(am)p M (an)

We relate the 2-point distribution functions to the correlation
functions using Eq. (2.4) to obtain equations for the evolution of

P01, 0m, 0n) = (2.13)
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the correlation functions. The evolution of F(l,I1+1) is given by

C,, C
F’ll+1_—FlI+l{'“ }
(L1+1) LD o=

P

I {C’ Ctpgo1.41)4

+PPF 1

C’”m 14+2)—2F(, 1+1)}

+ o 2F(I+1)

aten
Ci_q
C1(1 C)

Ciin ]
e [1-C 1 FLI+D[1=C 1 F(I+1,1+2)IF(L 1+ 2)],
Cl+1(1 Cl+ )[ 1+1 ( )][ I+1 ( )] ( )

IV 1 CFL I+ 1)1 = GE(L = DJFA—1,1+1)

(2.14)

where prime denotes differentiation with respect to time. For any
general distance, where |[—m| > 1, we obtain

Cl  Pm[Ci_q Ciiq

C } +—{ G F(l 1,m)+TF(l+1,m)

F'(l,m)= —F(,m) {C’ 3
YR, m—1)+ "”’F(l m+1)—4F(, m)}

Cm
+&{ﬁ[1 —CF, 1= 1)1 = CFd, m)IF(m,1—1)
2|ca-cy- e ’
Cl+l
teds )[1 —C/F(L 1+ D1 = CFd, m)IFm, 1+1)

Cm+1
+W[1 —CmFE(,m)][1—-CrF(m,m+1)F(,m+1)

le

W“ —CF(, m)|[1 = CpF(m,m—1)F(,m—1)|.

(2.15)

We solve these equations numerically using an RK4 algorithm
with a constant time step, ot. For each set of parameters, we test
smaller timesteps to confirm the results are visually indistinguish-
able. We calculate v and v¢in the same way as for the MFA, and we
again have reflecting boundary conditions and initial conditions of
the form of Eq. (2.1). As discussed by Simpson and Baker (2011),
initial conditions such as these lead to difficulties as the correla-
tion functions are unbounded when C;=1 or (;=0. This issue can
be resolved by using a hybrid approach whereby we use the PWA
in regions where € < C < (1—-¢) and the MFA elsewhere. In this
case, we set e=1 x 107 1%, We also need to choose a truncation
value for F(I, m) with m=1+1,1+2, [+3,...,]+M. We truncate at
M=10, and test higher values of M to confirm the suitability of our
truncation choice (results not shown).

2.4. One-hole approximation

The OHA estimates the asymptotic front speed in situations
where we assume that there is only one hole (unoccupied lattice
site) behind the front. In this section we show how to calculate vy
using the OHA, relaxing the assumption made by Callaghan et al.
(2006) that P,+Pp=1. We know that if P,=0, vy=P,/2 and
there will be no holes behind the moving front. For P, small,
there will be a correction factor to v In this approximation, we
assume that there will never be more than one hole behind the
leading edge of the front. We define the one-hole states, whereby
the hole is in the nth position behind the leading cell, in the
following way:

10y=(...11111000...);
11y=(...11101000...);
12)=(...11011000...);
13)=(...10111000...), etc

Note that we always define states in a frame moving with respect
to the front. We only allow transitions between these states. The
transitions and their associated probabilities Wy; = W(|i)— |j)) are

Woo = Py/2,

proliferation forwards
WO] = P m / 2,

—

migration forwards

Wip= Py + Pn/2,
~ N

proliferation of cells either side of hole migration of end cell backwards
Wi = P2 + Pm/2,

proliferation of end cell forwards migration of second to end cell forwards
WnO = P D>

proliferation of cells either side of hole
Wpn-1= Pm/2, n>1,

migration from ahead of hole

Whns1= Py/2 + Pp/2, n>1.

~——
proliferation of end cell migration from behind hole

Next, we consider the probability of being in a given state, p,.
As we are only considering the asymptotic behaviour, we know
that transitions in and out of a state must be equal, leading to the
following equations:

poWor = ¥ paWho, (2.16)
n=1
P1(Wio+Wi2) =poWor +pa W, (2.17)
PrWro+Wan 1 +Wapni1) =P iWhnoin+Pns iWhitn, n>1
(2.18)

Using the transition probabilities, we can rewrite these as

P

P [es}
S Po= (Pp"‘ 5 >P1+Pp > Dn (2.19)
n=2
3P Pn_ P
< 2P+Pm>P1 2P0+7m172= (2.20)
3 Pp+P Pr
< 2"+Pm>p P 5 P+ anﬂ, n>1. (2.21)

For n> 1, we follow the approach of Callaghan et al. (2006)
and assume the ansatz p, =a"'p;. We insert this ansatz into
Eq. (2.21) to obtain

P 2 3PP PP+PT" —
5 —a ( 5 +Ppy a+T_O. (2.22)
Solving this quadratic in a gives
3P, /24Py + /9P2 /4 +2P,P
_F " P e (2.23)

P

We know that as n increases p, decreases, therefore we take only
the negative square root. Assuming that Py, is small relative to Pp,
we can use a series expansion to obtain

Pm\*

Py) -

1 4 (Py\ 16 (Pn\> 80 (Pp\’
a=3+71(7r) 2w(rr) *zrwr() +©
Note that even if we enforce P, +Pp, =1, this is different from the
expression given by Callaghan et al. (2006). Having relaxed this
assumption earlier, the expansion was performed on a different
expression, thus leading to a different overall approximation.

We substitute p, =ap; into Eq. (2.20) and use }»%°_,p,=1—
Do—D; in Eq. (2.19) resulting in a pair of equations for po and py.
We solve these simultaneous equations to obtain

3PP +4P; — P \/Pp(9P, +8Pr)

Po= 2(PpPr—P% +2P2)

(2.24)

. (2.25)
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_ 6P +7PpPim — P \/Pp(9P, + 8Ppm) + 2Py /Pp(9P, +8Pp)

2(PyPr— Py +2PY)

P1

(2.26)

Knowing p, it is possible for us to approximate v We know
that if holes are opening up behind the front, vy will be smaller.
When Py, =0, v = Pp/2. For non-zero Py, there will sometimes be
movement forward at a rate P, /2, thus, if there are no holes,
V¢ = (Pp+Pm)/2. There will also be movement back into holes thus
we reduce the front speed by taking into account those agents
moving back into holes:

v _Py+Pm Pnpy(Pp, Pm)
=7 2 ‘

Performing a series expansion on p;, we thus obtain the
following approximate expression for the front speed:

_ Pp+Pn 1P2  5P) 340-162P,P,

_oomy = Tm PTF T PAIpIm 5
U=72 e, 'sap2 3888 p3 +OCm).

2.27)

(2.28)

Therefore, we estimate vy to be 0.498 when P,=0.9 and P,,=0.1,
agreeing with the results of Callaghan et al. (2006).

3. Results
3.1. Transient behaviour

In practice, we must wait a sufficient duration of time to observe
the asymptotic speed, which in theory is only fully established as
t—oo. In Fig. 3, we see this for the three cases in which we can
examine the transient behaviour: the discrete, MFA and PWA. The
OHA is only capable of predicting the asymptotic front speed, which
is not ideal as this may not always be reached in reality, depending
on the experimental conditions (Liang et al., 2007; Valster et al.,
2005; Rodriguez et al., 2005; Young et al., 2012). We see, in Fig. 3,
that the time taken to reach the asymptotic travelling front speed
varies depending on the model chosen, and the parameter values.
For sufficiently low P,/P,, the MFA and the PWA are both in
suitable agreement with the averaged discrete results. For larger
Pp/Pm, the discrete model reaches the asymptotic speed noticeably
faster than the MFA. The PWA takes significantly longer and
changes very slowly for a long period before more rapidly adjusting
to the asymptotic speed. The asymptotic speed, vy, is identical for
the MFA and the PWA in all cases, with this value being higher than
the averaged discrete result for large Py /Pr. The asymptotic speed is
identical for the MFA and the PWA due to the fact that we have used
a hybrid PWA whereby we use the MFA in regions where C < € and
C>1-—e¢. Changing € will slightly shift the time at which the

asymptotic speed is reached; a larger value of ¢ leads to the
asymptotic speed being reached more quickly (results not shown).

Additionally, we examine the effects of altering the steepness of
the initial conditions by varying x in Eq. (2.1). Altering the initial
conditions, as long as compact support is maintained, does not
affect the asymptotic results. However, different initial conditions
have an impact on the transient behaviour. We see, in Fig. 4, that a
steeper ramp (which corresponds to a higher value of x in
Eq. (2.1)) leads to a lower initial speed. The MFA and the PWA
also lie slightly closer to the averaged discrete behaviour at early
times when the initial conditions are steeper.

We compare the transient density profiles at various times in
Fig. 5. From this we see that the PWA better predicts the averaged
discrete behaviour than does the MFA. Thus, whilst the asymptotic
behaviour might be the same, the PWA is more accurate in
predicting the average transient behaviour of the system when
P, is sufficiently low relative to Pn,. We also note, by comparing the
top and bottom rows of Fig. 5, that a steeper initial slope leads to
the MFA and the PWA better approximating the averaged discrete
behaviour in the transient region.

3.2. Asymptotic behaviour

As t—oo, all cases predict a travelling front with a constant
speed. We relax the assumption of Callaghan et al. (2006), no
longer requiring that P, +Pp,, = 1. This allows us to look at a more
relative measure, the ratio of proliferation to migration rates,
P,/Py. We keep P,=1 and allow P, to vary, examining the
resulting behaviour in Fig. 6(a). We see that the OHA provides a
good estimate of vy for high enough P,/Pn, but diverges when
Pp/Pm is reduced beyond a certain level. We also look at the
average number of holes behind the front in the discrete case
(Fig. 6(b)) for the same parameter range, noting that this corre-
sponds well with the predictive power of the OHA: as we move
beyond one hole on average, the OHA breaks down. The break-
down of the OHA can also be attributed to the assumption that P,
is small relative to P, which ceases to hold as we increase P,, and
decrease P,. The MFA prediction for vy (which is identical to the
PWA predictions) agrees well with the averaged discrete case for
low P, but is not a good predictor when P, is large. For a region in
the middle, neither the MFA nor the OHA provides a suitable
approximation to the averaged discrete behaviour.

4. Discussion

Mathematical models are often used in conjunction with experi-
mental data to examine moving cell fronts, in the hope of

a b c
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Fig. 3. The transient front speed, v, varies over time, eventually reaching its asymptotic travelling speed, v We see this behaviour in the three different cases for which we
can examine the transient behaviour: the discrete, MFA and PWA. The behaviour depends on the parameters chosen, and we compare three P, /Py, ratios (for all cases P,,=1
and P, is varying), with the initial steepness given by x = 50 in all cases. For low P, /P, we notice that all three methods are in relatively good agreement. For larger P, /Py,
the MFA and the PWA begin to deviate from the averaged discrete results, generally tending to a higher asymptotic speed. In all cases, the MFA and the PWA eventually reach
the same travelling speed, although the PWA takes significantly longer. The time taken for the PWA to reach the same speed as the MFA decreases as P, /Py, increases, as we
see by comparing (b) and (c). (a) Pp/Pm =5 x 1073, (b) Py /Py = 10~ (c) Py /Py =1.
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Table 1
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A description of which methods work under specific circumstances, where long and short refer to the asymptotic
and transient behaviour, respectively. The best method for given conditions is highlighted.

Small P,/P,,

Intermediate P,/ P,

Short Long Short

MFA v 4 X
PWA v v X
OHA X X X
Discrete 4 v v

Large P,/ Py,

Long Short Long
X X X
X X X
X X v
v v v

determining information such as the mechanisms driving the
movement of the front. We have compared different methods for
modelling the transient and asymptotic moving cell front beha-
viour in a range of parameter space. These results are summarized
in Table 1. Many models in the past have focussed on predicting
the asymptotic behaviour, whereby a front travelling at constant
speed has been established. Whilst this is appropriate in some
cases, there are many experimental situations in which the
transient behaviour is key. Not only does the final behaviour take
some time in practice to achieve, but some experiments are also
performed in such a manner that we may never observe the final
behaviour. For instance, in a scratch or punch-hole assay, the cells
will be encroaching from multiple directions, resulting in the
fronts interacting and the unoccupied region closing before
asymptotic behaviour can be reached (Liang et al., 2007; Valster
et al., 2005; Rodriguez et al., 2005). A major drawback of the OHA
is its inability to predict the transient behaviour; it is only able to
predict the asymptotic speed. The MFA and the PWA can both be
used for transient data, with the PWA giving improved results thus
making it preferable for transient behaviour.

For asymptotic behaviour, the method best suited to a given
situation depends on the relative rates of movement and
proliferation. In regions where P,/Py is small (P,/Pn <0.01),
we have a shallow front (Swanson et al., 2003) with many holes
behind the leading cell, thus the OHA diverges substantially
from the averaged discrete results and cannot be successfully
used. The MFA and the PWA are better suited to modelling cells
in this region of parameter space. As these two methods give the
same result asymptotically, it is most sensible to use the MFA for
asymptotic predictions as this is a far simpler model to imple-
ment. In the experimental results in Fig. 1, we notice a large
number of holes behind the front, thus we expect this cell line
(Todaro and Green, 1963; Simpson et al., 2007b) to be best
approximated by the MFA asymptotically, and by the PWA in the
transient region.

For cell lines where P,/Pn is relatively large (P,/Py >0.8),
there will be fewer holes behind the sharp front (Swanson et al.,
2003), thus the OHA is the method best suited to asymptotic
predictions in this region, as indicated by its excellent agreement
with the averaged discrete results. The MFA and the PWA do
not perform as well in this region. We expect cell lines with low
rates of migration relative to proliferation to lie in this region
of parameter space. For example, a pair-wise model developed for
uniform initial conditions (Baker and Simpson, 2010) was used to
determine P, and P, for a breast cancer cell line, MDA MB 231
(Simpson et al., 2013a). With P,=0.069 and P,,=0.04, we have a
ratio, P, /Pm = 1.7, which lies within the range for which the OHA
is best suited for asymptotic predictions. Thus for MDA MB 231
(Simpson et al., 2013a) and similar cell lines, we should use the
OHA if we only need information about the asymptotic behaviour.

For intermediate P, /Py, (0.01 <P, /Py < 0.8), none of the meth-
ods provide a good approximation to the averaged discrete results in
the long term, and the PWA becomes less successful in the transient
region. Thus developing a model that accurately approximates the
averaged discrete behaviour in this region requires further investiga-
tion. By extending the OHA to higher numbers of holes, as suggested
by Callaghan et al. (2006), we can improve upon this approximation,
but at an increasing level of complexity for every additional hole
added. Similarly, the PWA can be extended to triplets and so forth to
better predict the transient behaviour in a wider range of parameter
space. Again, this becomes increasingly complex as more information
is incorporated.

In future, one could consider the inclusion of death in models
of advancing cell fronts. It is fairly straightforward to include death
in the MFA and the PWA, and this has been done in previous work
(Simpson and Baker, 2011). The OHA can also be extended to
include death. However, if death rates are too high, relative to
proliferation, we expect the OHA to break down due to there being
a large number of holes behind the front. Additionally, we have
only considered a 1D problem but the method can be extended to
higher dimensions in future in order to be more biologically
relevant. Some work has been done on predicting the asymptotic
front speed by following the leading cell in a similar way to the
OHA for ecological systems (Ellner et al., 1998).

We have demonstrated the relative merits of the MFA, PWA
and OHA in comparison with averaged discrete results for tran-
sient and asymptotic behaviours in a broad range of parameter
space. Our results demonstrate that it is essential to choose the
most appropriate modelling strategy for a given biological system,
otherwise inaccurate estimations and predictions may result,
which could have serious consequences.
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