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Groundwater flow models are usually characterized as being either transient flow models or steady state
flow models. Given that steady state groundwater flow conditions arise as a long time asymptotic limit of
a particular transient response, it is natural for us to seek a finite estimate of the amount of time required
for a particular transient flow problem to effectively reach steady state. Here, we introduce the concept of
mean action time (MAT) to address a fundamental question: how long does it take for a groundwater
recharge process or discharge processes to effectively reach steady state? This concept relies on identify-
ing a cumulative distribution function, F(t;x), which varies from F(0;x) = 0 to F(t;x) ? 1� as t ?1,
thereby providing us with a measurement of the progress of the system towards steady state. The
MAT corresponds to the mean of the associated probability density function f(t;x) = dF/dt, and we dem-
onstrate that this framework provides useful analytical insight by explicitly showing how the MAT
depends on the parameters in the model and the geometry of the problem. Additional theoretical results
relating to the variance of f(t;x), known as the variance of action time (VAT), are also presented. To test our
theoretical predictions we include measurements from a laboratory-scale experiment describing flow
through a homogeneous porous medium. The laboratory data confirms that the theoretical MAT predic-
tions are in good agreement with measurements from the physical model.

� 2013 The Authors. Published by Elsevier B.V. All rights reserved.
1. Introduction

Groundwater flow systems, and the corresponding models
used to study these systems, are typically characterized as being
either transient or steady state (Remson et al., 1971; Bear, 1972;
Clement et al., 1994; Haitjema, 1995; Strack, 1989; Wang and
Anderson, 1982; Zheng and Bennett, 2002). This characterization
is useful since the mathematical and computational techniques
required to solve steady state groundwater flow models are gen-
erally much simpler than those required to solve transient
groundwater flow models. Given that steady flow conditions
correspond to the long time asymptotic limit of a transient re-
sponse (Wang and Anderson, 1982, pp. 76–77; Haitjema, 1995,
pp. 158–159) it is relevant to develop tools that can be used to
estimate the amount of time required for a particular transient
flow problem to effectively reach steady state. In the heat and
mass transfer literature such a time is called a critical time
(Hickson et al., 2009a,b, 2011).

A schematic diagram of a groundwater recharge problem is
outlined in Fig. 1(a) for an aquifer of length L. The aquifer is
bounded by two rivers. River one, at x = 0, at river stage h1, and
river two, at x = L, at river stage h2. The hypothetical phreatic
surface without recharge is indicated by the curve marked t = 0.
We consider initiating a transient response in the groundwater
flow system by applying spatially uniform recharge at rate R.
The result of applying this recharge is that the amount of water
stored in the aquifer increases with time as the phreatic surface
rises to reach the curve indicated by t ?1. This kind of scenario,
where recharge is applied to an existing unconfined groundwater
flow system, leads to an increase in the saturated depth corre-
sponding to an increase in the amount of water stored in the
aquifer. The details of how to design and operate such recharge
systems have been described at length previously (Bouwer,
2002; Daher et al., 2011; Martín-Rosales et al., 2007; Pedretti
et al., 2012; Vandenbohede and Van Houtte, 2012). The design
of such recharge systems naturally leads to the following
questions:
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Fig. 1. (a) Schematic of an aquifer recharge process. The groundwater flow takes place on a one-dimensional domain, 0 6 x 6 L, and is assumed to correspond to a linearized,
unconfined, Dupuit–Forchheimer description (Bear, 1972). The saturated depth at x = 0 (river 1) is h(0, t) = h1. The saturated depth at x = L (river 2) is h(L, t) = h2. The schematic
depicts a transition where the initial phreatic surface, indicated by t = 0, asymptotes to a new steady state, indicated by t ?1. This transition is associated with the
application of uniform recharge, at rate R, for t > 0. (b) Schematic showing how the saturated thickness at a fixed location, x = x1, in Fig. 1(a) varies with time, t. This schematic
corresponds to a recharge transition since h(x, t) increases with t. (c) For the schematic transition in (b) we show F(t;x1), which has the property that F(0;x1) = 0 and
F(t;x1) ? 1� as t ?1. (d) For the schematic transition in (b) we plot f(t;x1), using Eq. (4). The mean of this probability density function is indicated in the red vertical (dotted)
line, and corresponds to the MAT, T(x1). The variance of this probability density function is indicated with the gray shading, which corresponds to one standard deviation
about the mean Tðx1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffi
Vðx1Þ

p
, as indicated. Profiles in (e) show T(x) (solid) and TðxÞ þ

ffiffiffiffiffiffiffiffiffiffi
VðxÞ

p
(dashed) at all locations 0 6 x 6 L. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)
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(1) How long does it take for the volume of water stored in the
aquifer to reach a maximum? (i.e. what is the critical time
for this process?)

(2) How does this critical time depend on the parameters gov-
erning the flow processes and the geometry of the aquifer?

Strictly speaking, from a mathematical point of view, it takes an
infinite amount of time for a transient response of a diffusive pro-
cess to become steady (McNabb and Wake, 1991; McNabb, 1993).
Clearly, this strict mathematical definition is impractical and it
would be useful to have a quantitative framework to estimate a fi-
nite timescale that indicates when the time rate of change of water
stored in the aquifer to effectively reach zero (Sophocleus, 2012;
Walton, 2011). Developing a method of analysis that avoids the
need for relying on numerical computation to answer these ques-
tions would be useful since it is not obvious how, for example,
changing the properties of the porous medium or the geometry
of the groundwater flow system would affect the time taken for
the rate of change of water stored in the aquifer to effectively reach
zero. Understanding this timescale may have several practical
uses; for example, if we were to design an artificial recharge pro-
gram it would be of interest to monitor the increase in storage in
the aquifer with time and to have a criteria to indicate when the
system would effectively reach steady state.

Previous attempts to characterize critical times for groundwater
flow models have relied on using numerical experimentation (Buès
and Oltean, 2000; Chang et al., 2011), laboratory-scale experimen-
tation (Kim and Ann, 2001; Goswami and Clement, 2007; Chang
and Clement, 2012; Simpson et al., 2003) or very simple mathe-
matical definitions. One common mathematical approach is to de-
fine the critical time to be the amount of time taken for the
transient solution to reach within �% of the corresponding steady
state value, where � is some small user-defined tolerance (Hickson
et al., 2011; Landman and McGuinness, 2000; Lu and Werner,
2013; Watson et al., 2010). Although insightful, there are certain
difficulties associated with this definition, namely:

(1) this definition depends upon a subjective choice of �,
(2) this definition requires the complete solution of the the tran-

sient groundwater flow problem, and
(3) this definition leads to a numerical framework that does not

provide analytical insight into how the critical time varies
with the parameters in the model.

In this work we introduce the concept of mean action time
(MAT) which gives us a finite estimate of the amount of time re-
quired for a transient groundwater flow resposne to effectively
reach steady state. The MAT was originally defined by McNabb
and Wake as a tool to study linear heat transfer (McNabb and
Wake, 1991; McNabb, 1993). Here we demonstrate how to extend
this theory to analyze groundwater flow processes. We will show,
in a general framework, that:

(1) the MAT gives us an objective finite estimate of the amount
of time required for a transient response to effectively reach
steady state,
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(2) the MAT can be found explicitly without solving the govern-
ing transient groundwater flow equation, and

(3) the mathematical expression for the MAT shows us how the
timescale for different transitions, such as applying or
removing different amounts of recharge, would depend on
the parameters in the groundwater flow model.

Furthermore, once we have defined the MAT, we can also define
higher moments such as the variance of action time (VAT) which
provides a measure of the spread of the distribution about the
mean (Ellery et al., 2012b, 2013; Simpson et al., 2013). The VAT
is useful since we know that if the VAT is small then we are dealing
with a low-variance distribution for which the mean value pro-
vides a useful estimate of the timescale of interest (Ellery et al.,
2012b; Grimmett and Welsh, 1986). Alternatively, if the VAT is
large then we are dealing with a high-variance distribution for
which the mean value is less insightful (Ellery et al., 2012b; Grim-
mett and Welsh, 1986). For such high variance distributions we can
improve our estimate of the time required for the system to reach
steady state by incorporating information about the variance
(Simpson et al., 2013), as we shall demonstrate in Section 3.

In this work we aim to first present the mathematical deriva-
tions and assumptions in a general framework. Once we have
developed the theoretical results we then apply these concepts
to obtain specific MAT and VAT results for a new laboratory-scale
experimental data set describing aquifer recharge and discharge
processes.

2. Theoretical methods

We consider a one-dimensional, unconfined, Dupuit–Forchhei-
mer model of groundwater flow through a saturated homogeneous
porous medium (Bear, 1972, 1979)

Sy
@h
@t
¼ K

@

@x
h
@h
@x

� �
þ R; ð1Þ

where h(x, t) > 0 [L] is the saturated thickness at position x and time
t, Sy > 0 [–] is the specific yield, K > 0 [L/T] is the saturated hydraulic
conductivity and R > 0 [L/T] is the recharge rate. For practical prob-
lems where the hydraulic gradient is very small, j@h/@xj � 1, this
model is often linearized to give

Sy
@h
@t
¼ K�h

@2h
@x2 þ R; ð2Þ

where �h is the average saturated thickness (Bear, 1972, 1979; Hai-
tjema, 1995; Strack, 1989). This simplification is sufficiently robust
for treating many problems (Haitjema, 1995; Strack, 1989) includ-
ing certain laboratory-scale systems (Kim and Ann, 2001). For nota-
tional convenience we will re-write Eq. (2) in the form of a
reaction–diffusion equation

@h
@t
¼ D

@2h
@x2 þW; ð3Þ

where D ¼ K�h=Sy [L2/T] is the diffusivity and W = R/Sy [L/T] is a zero
order constant source term which is used to model recharge (Bear,
1979).

To apply our modeling framework to the schematic in Fig. 1(a),
we will consider a model of unconfined groundwater flow, Eq. (3),
that describes an arbitrary transition from some initial condition,
h(x,0) = h0(x), to some steady state limt?1h(x, t) = h1(x). This tran-
sition is sufficiently general that it could describe an aquifer re-
charge process, where h1(x) P h0(x) for all locations x, such as
the case where additional recharge applied by increasing R. Simi-
larly, our framework could describe an aquifer discharge process,
where h1(x) 6 h0(x) for all locations x, such as the case where
the recharge applied to the system is reduced, by decreasing R.
We seek to characterize the amount of time required for such tran-
sitions to effectively reach steady state by considering the follow-
ing quantities (Ellery et al., 2012a,b):

Fðt; xÞ ¼ 1� hðx; tÞ � h1ðxÞ
h0ðxÞ � h1ðxÞ

� �
; t > 0;

f ðt; xÞ ¼ dFðt; xÞ
dt

¼ � @

@t
hðx; tÞ � h1ðxÞ
h0ðxÞ � h1ðxÞ

� �
; t > 0: ð4Þ

For many transitions F(t;x) monotonically increases from F = 0
at t = 0 to F ? 1�, as t ?1 at all spatial locations x, as shown in
Fig. 1(b)–(c). Here, F(t;x) and f(t;x) as functions of time t, at a par-
ticular location x, which can be thought of as a parameter. The
properties of these functions mean that we can interpret F(t;x) as
a cumulative distribution function and f(t;x) as the associated
probability density function (Ellery et al., 2012a,b). From a physical
point of view, our interpretation of these definitions is as follows:
at t = 0, we have F = 0, meaning that 0% of transient response has
taken place. In the long time limit as t ?1, we have F = 1, meaning
that 100% of the transient response has occurred. For intermediate
values of t we have 0 < F < 1, meaning that (100 � F)% of the tran-
sient response has occurred. For example, if F(t;x) = 1/2, then we
can interpret this as 50% of the transient response has taken place
by this time.

The MAT, T(x), is the mean of this distribution which has the
probability density function f(t;x), and can be written as (Ellery
et al., 2012b)

TðxÞ ¼
Z 1

0
tf ðt; xÞdt: ð5Þ

Physically, we interpret the MAT to be the mean timescale re-
quired for the initial condition, h0(x), to asymptote to the steady
state, h1(x). Intuitively, we expect that this timescale would de-
pend on spatial location and we will see that the MAT is indeed
a function of position, x. To evaluate the MAT we apply integration
by parts to Eq. (5) to obtain

TðxÞgðxÞ ¼
Z 1

0
h1ðxÞ � hðx; tÞdt; ð6Þ

where we have defined g(x) = h1(x)� h0(x) for notational conve-
nience. To arrive at Eq. (6) we made use of the fact that h(x,t)� h1(x)
decays to zero exponentially fast as t ?1, which is true for all linear
reaction diffusion equations (Ellery et al., 2012a,b). Differentiating
Eq. (6) twice with respect to x and combining the resulting expression
with Eq. (3), gives us

d2½TðxÞgðxÞ�
dx2 ¼ � gðxÞ

D
; ð7Þ

or, if we expand using the product rule, we can write this as

d2TðxÞ
dx2 þ dTðxÞ

dx
2

gðxÞ
dgðxÞ

dx

� �
þ TðxÞ 1

gðxÞ
d2gðxÞ

dx2

" #
¼ � 1

D
; ð8Þ

which is a boundary value problem for the MAT, T(x). We would like
to emphasize that Eq. (8) is sufficiently general that it applies to any
initial condition, h0(x), and any steady state, h1(x), such that F(t;x)
monotonically increases from F = 0 at t = 0 to F ? 1� as t ?1 for all
x. This means that Eq. (8) can be used to characterize the amount of
time required for a transition to reach steady state for a very general
class of aquifer recharge and discharge processes. Furthermore the
approach is valid for any values of Sy, K, R, L, h1 and h2. We note that
our derivation of Eq. (8) is very similar to previous work presented
by Ellery and coworkers (Ellery et al., 2012a,b) except that those
previous studies considered a first order linear source term in the
governing equations whereas here we consider a zero order con-
stant source term.
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The theory of MAT relies on certain properties of the problem
that guarantee that the improper integral for T(x), given by Eq.
(5), is convergent. When we apply the definition of MAT in the
present context we are guaranteed that the improper integral in
Eq. (5) is convergent since h(x, t) � h1(x) decays to zero exponen-
tially fast as t ?1 for all such reaction diffusion equations (Ellery
et al., 2012a,b; Hickson et al., 2011). Alternative definitions of a
critical time, such as considering the median of action time, where
F(t;x) = 1/2, do not allow us to make use of this asymptotic prop-
erty and consequently we cannot solve for the critical time without
having previously solved the underlying partial differential equa-
tion governing for the transient solution, h(x, t).

Similar to how we calculated the mean of f(t;x), we can also
evaluate higher moments of f(t;x), such as the variance, which
quantifies the spread about the mean (Ellery et al., 2012b, 2013;
Simpson et al., 2012). We begin by using the standard definition
of the variance

VðxÞ ¼
Z 1

0
ðt � TðxÞÞ2f ðt; xÞdt: ð9Þ

Expanding the quadratic term in the integrand in Eq. (9) allows
us to evaluate two of the three integral expressions on the right
hand side of Eq. (9) in terms of the MAT, T(x). The remaining inte-
gral can be simplified using integration by parts, making use of the
fact that h(x, t) � h1(x) decays to zero exponentially fast as t ?1
to give

wðxÞ ¼ 2
Z 1

0
tðh1ðxÞ � hðx; tÞÞdt; ð10Þ

where we have made a change of variables, w(x) = V(x)g(x) +
T(x)2g(x), to simplify the expression. To obtain a differential
equation for w(x) we differentiate Eq. (10) twice with respect to x.
Combining the resulting expression with Eq. (3) gives us

d2wðxÞ
dx2 ¼ �2TðxÞgðxÞ

D
; ð11Þ

which, together with appropriate boundary conditions can be
solved for w(x) and in turn rearranged to give V(x), recalling that
V(x) = w(x)/g(x) � T(x)2. Once we have solved the relevant boundary
value problems for T(x) and V(x), we can identify a time interval
t 2 ½TðxÞ �

ffiffiffiffiffiffiffiffiffiffi
VðxÞ

p
; TðxÞ þ

ffiffiffiffiffiffiffiffiffiffi
VðxÞ

p
�. Here, we take the time interval to

be the mean plus or minus one standard deviation of the distribu-
tion f(t;x) (Simpson et al., 2013). Once we have calculated the mean
and variance of f(t;x) at a particular location, as indicated in
Fig. 1(d), we can put this information together to view how the
MAT and VAT varies with position, as indicated in Fig. 1(e).

To reiterate the practicality of our results, we would like to
emphasize the following points. From a strict mathematical point
of view, the transient solution of a reaction diffusion equation,
such as Eq. (3), takes an infinite amount of time to reach steady
state (McNabb and Wake, 1991; McNabb, 1993). Using this strict
definition, it is completely unclear how to make a practical esti-
mate of the duration of time that a transient groundwater process
will require to reach steady state. Instead we use the MAT as a fi-
nite estimate of the amount of time required for the transient flow
process to effectively reach steady state.

2.1. MAT and VAT for aquifer recharge

Although we have outlined the MAT theory in Section 2 for an
arbitrary aquifer recharge or discharge process, we will now dem-
onstrate the insight provided by the MAT framework by consider-
ing a specific application. We will examine the transition described
by Eq. (3) on 0 6 x 6 L with boundary conditions h(0, t) = h1 and
h(L, t) = h2. We consider a transition from the initial condition,
h0ðxÞ ¼
xðh2 � h1Þ

L
þ h1; ð12Þ

to a new steady state that is driven by applying recharge, R, for t > 0.
The long time steady state for this transition is

lim
t!1

hðx; tÞ ¼ h1ðxÞ ¼ �
Wx2

2D
þ x

h2 � h1

L
þWL

2D

� �
þ h1; ð13Þ

where D ¼ K�h=Sy and W = R/Sy. This particular initial condition and
steady state gives us

gðxÞ ¼WxðL� xÞ
2D

: ð14Þ

To find the MAT for this transition we note that
dg(x)/dx = W(L � 2x)/(2D) and d2g(x)/dx2 =�W/D. Substituting
these expressions for g(x), dg(x)/dx and d2g(x)/dx2 into Eq. (8) gives

d2TðxÞ
dx2 þ dTðxÞ

dx
2ðL� 2xÞ
xðL� xÞ

� �
þ TðxÞ �2

xðL� xÞ

� �
¼ � 1

D
; ð15Þ

which is a variable coefficient second order boundary value prob-
lem that is singular at x = 0 and x = L. We note that Eq. (15) is inde-
pendent of W, and this can be explained by the fact that the
coefficients of dT(x)/dx and T(x) in Eq. (8) are rational functions in
which W cancels for our g(x), given by Eq. (14).

To determine the relevant boundary conditions for Eq. (15) we
multiply both sides of this equation by x(L � x), which gives

xðL� xÞd
2TðxÞ
dx2 þ 2ðL� 2xÞdTðxÞ

dx
� 2TðxÞ ¼ � xðL� xÞ

D
: ð16Þ

Evaluating Eq. (16) at x = 0 gives us

dTð0Þ
dx

� Tð0Þ
L
¼ 0; ð17Þ

which is a Robin condition for the boundary at x = 0 (Kreyszig, 2006;
Zill and Cullen, 1992). To determine the other boundary condition
we substitute x = L into Eq. (16) to give

dTðLÞ
dx
� TðLÞ

L
¼ 0; ð18Þ

which is a Robin condition at x = L (Kreyszig, 2006; Zill and Cullen,
1992).

The solution of Eq. (15) with Eqs. (17) and (18) is

TðxÞ ¼ 1
12D

ðL2 þ xL� x2Þ: ð19Þ

This solution shows that the MAT is spatially dependent and has
a maximum value of 5L2/(48D) at x = L/2. This expression is very
revealing since it shows us exactly how the MAT depends on the
parameters in the model and the boundary conditions. We see that
the MAT depends on the ratio L2/D, which is a diffusive timescale
(Barenblatt, 2003).

Now that we have solved for the MAT we can use Eq. (11), with
the relevant boundary conditions w(0) = w(L) = 0, to solve for w(x)
which can be rearranged to give

VðxÞ ¼ 1
720D2 7L4 þ 2L3x� 3L2x2 þ 2x3L� x4

� �
: ð20Þ

The maximum VAT occurs at x = L/2 and is given by
119L4/(11520D2). The expression for the maximum variance can
be used to find the maximum standard deviation, which is given
by

ffiffiffiffiffiffiffiffiffi
119
p

L2=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11520
p

DÞ � 0:1016L2=D.

2.2. MAT and VAT for aquifer discharge

We now consider a transition governed by Eq. (3) for the pro-
cess of aquifer discharge. With the same domain and boundary
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conditions described for the recharge problem in Section 2.1, we
consider the initial condition

h0ðxÞ ¼ �
Wx2

2D
þ x

h2 � h1

L
þWL

2D

� �
þ h1; ð21Þ

which corresponds to the long term steady state profile from the re-
charge process described in Section 2.1, where D ¼ K�h=Sy and
W = R/Sy. To initiate a discharge process, where the saturated thick-
ness of the aquifer will decrease with time, we set R = 0 in Eq. (2),
which is equivalent to setting W = 0 in Eq. (3), which gives

lim
t!1

hðx; tÞ ¼ h1ðxÞ ¼
xðh2 � h1Þ

L
þ h1; ð22Þ

and

gðxÞ ¼ �WxðL� xÞ
2D

: ð23Þ

With these conditions, Eq. (8) can be written as

d2TðxÞ
dx2 þ dTðxÞ

dx
2ðL� 2xÞ
xðL� xÞ

� �
þ TðxÞ �2

xðL� xÞ

� �
¼ � 1

D
; ð24Þ

which is exactly the same boundary value problem as we obtained
previously in Section 2.1. The fact that the boundary value problem
governing the MAT for the discharge process is exactly the same as
the boundary value problem governing the MAT for the recharge
process means that the exact same Robin boundary conditions
and the exact same solution, namely Eq. (19), are relevant for both
the recharge and discharge problems. Similarly, we can also solve
Eq. (11) to find the VAT for this discharge problem. Following the
same procedure to evaluate the VAT, we find that the solution of
Eq. (11) for the discharge problem is exactly the same as for the re-
charge problem, namely Eq. (20). This result shows that the MAT
and VAT for the aquifer recharge and discharge processes are
identical.

3. Results

We now demonstrate the practicality of our theoretical predic-
tions from Sections 2.1 and 2.2 by considering new datasets
derived from aquifer recharge and discharge experiments com-
pleted in our laboratory. We performed experiments in a labora-
tory-scale aquifer model, packed with a homogeneous porous
medium, by applying different amounts of recharge to the system
and measuring the temporal response of the saturated depth in the
system. Our experimental data will give us an indication of the
amount of time required for the saturated thickness of the labora-
tory-scale aquifer to reach steady state and we will test these mea-
surements against predictions made according to the MAT and VAT
results developed in Section 2. We will test the MAT and VAT the-
ory for both aquifer recharge and aquifer discharge experiments.

3.1. Case study: analysis of a new laboratory-scale data set

A laboratory-scale aquifer model, similar to the one used in sev-
eral previous studies (Goswami and Clement, 2007; Abarca and
Clement, 2009; Chang and Clement, 2012, 2013) was used, and
an image of the physical model is shown in Fig. 2(a). The tank
was constructed of Pexiglass. The central porous chamber
(50 cm � 28 cm � 2.2 cm) was packed under wet conditions with
uniformly-sized glass beads, where each bead has a diameter of
1.1 mm. We consider the glass bead system to be a homogeneous
and isotropic porous medium (Goswami and Clement, 2007; Abar-
ca and Clement, 2009; Chang and Clement, 2012, 2013). A constant
head boundary condition was applied at the left-hand vertical
boundary, where x = 0 cm, to maintain an initial saturated depth
of approximately 18.7 cm. A no-flow boundary was imposed at
the right-hand vertical boundary, where x = 50 cm.

A recharge gallery, consisting of approximately evenly spaced
constant flow drippers, was installed along the upper boundary
of the tank. Water was delivered to the recharge outlets from a
constant head tank. We considered two different kinds of experi-
ments and repeated each experiment for three different recharge
rates:

(1) For the recharge experiments, we considered the initial condi-
tion in the system to be at a spatially uniform saturated
depth h0(x) = h1 � 18.7 cm. At t = 0 the recharge was applied
and the increase in saturated thickness at the right hand
boundary, where x = 50 cm, was recorded using the scale
shown in Fig. 2(b). The recharge experiments were repeated
three times using three different recharge rates:
R1 = 1.23 cm/min, R2 = 1.77 cm/min, and R3 = 2.57 cm/min.

(2) The discharge experiments were initiated by removing the
recharge gallery at the conclusion of each recharge experi-
ment. This means that after a sufficient period of time
(approximately 5 min), at the conclusion of each recharge
experiment, the phreatic surface was approximately para-
bolic and each discharge experiment involved observing
the parabolic phreatic surface relaxing back to an essentially
horizontal phreatic surface.

The recharge rates used in the experiments are relatively large,
and the reason that we used such large recharge rates was so that
we could make our measurements as accurate as possible. For the
recharge experiments, we expect that initial saturated depth, h0(x),
will increase to h1(x) after a sufficient amount of time. Since we
are aiming to make accurate measurements of the increase in
h(x, t), it is convenient for us to use relatively large recharge rates
to ensure that the difference between h1(x) and h0(x) was approx-
imately 2–3 cm so that we could record these measurements as
accurately as possible using the scale shown in Fig. 2(b).

We first report results for the recharge experiments. Results in
Fig. 3(a)–(c) show the transient response at x = 50 cm in the
laboratory-scale aquifer when applying three different recharge
rates: R1 = 1.23 cm/min, R2 = 1.77 cm/min and R3 = 2.57 cm/min,
respectively. Comparing the profiles in Fig. 3(a)–(c) indicates that
each of the recharge experiments were initiated with
h(50,0) � 18.7 cm, and we observe that the increase in saturated
thickness at x = 50 cm depends on the recharge rate. For example,
with R1 = 1.23 cm/min we see that h(50, t) eventually increases
to approximately 19.9 cm, for R2 = 1.77 cm/min we see that
h(50, t) eventually increases to approximately 20.5 cm and for
R3 = 2.57 cm/min h(50, t) eventually increases to approximately
22.3 cm. Interestingly, a visual comparison of the three transient
data sets in Fig. 3(a)–(c) indicates that it is very difficult to distin-
guish the differences in the timescales of the transient processes
regardless of the differences in the recharge rate and the differ-
ences in the change in saturated thickness at x = 50 cm. This qual-
itative observation is consistent with our theoretical predictions
from Section 2.1 where the MAT framework predicted that the re-
charge timescale is independent of the recharge rate. We will now
quantitatively test this prediction using the data from Fig. 3(a)–(c).

To compute the values of f(t;x) we used the data from Fig. 3(a)–(c),
at x = 50 cm, and estimated h0(x) and h1(x) directly from these data.
To reconstruct f(t;x) for this data we rewrite Eq. (4) as

f ðt; xÞ ¼ 1
h1ðxÞ � h0ðxÞ

@hðx; tÞ
@t

� 1
h1ðxÞ � h0ðxÞ

hðx; t þ dtÞ � hðx; t � dtÞ
2dt

� �
; ð25Þ
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Fig. 2. (a) Laboratory-scale apparatus. The porous media chamber was wet-packed with uniform glass beads. A constant head boundary was imposed at x = 0 cm and a no
flow boundary was imposed at x = 50 cm. The initial condition corresponds to an approximately horizontal phreatic surface, as indicated. The recharge was applied
approximately uniformly along the top of the porous media chamber and eventually the phreatic surface evolves to the final state, as indicated. Observations were made by
monitoring the saturated depth of the fluid at x = 50 cm. The region contained within the (red) dashed square in (a) is shown in (b) where the saturated thickness is indicated
by the red arrow. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Results for the recharge experiments are given in (a)–(c) showing the evolution of h(x, t), at x = 50 cm, for R1 = 1.23 cm/min, R2 = 1.77 cm/min and R3 = 2.57 cm/min,
respectively. Using the data in (a)–(c), collected at 2 s intervals, profiles of f(t;x) at x = 50 cm were estimated using Eq. (25), and presented in (d)–(f). Estimates of the MAT at
x = 50 cm were obtained by numerically integrating Eq. (5) and the results are reported in (d)–(f).
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where we have used a central difference approximation to estimate
@h/@t (Chapra and Canale, 2009). This discrete expression for f(t;x)
can be evaluated using the h(x, t) time series data presented in
Fig. 3(a)–(c). The corresponding f(t;x) profiles, at x = 50 cm, shown
in Fig. 3(d)–(f), are given for the three different recharge rates:
R1 = 1.23 cm/min, R2 = 1.77 cm/min and R3 = 2.57 cm/min, respec-
tively. To quantitatively test our theoretical predictions from Sec-
tion 2.1 we evaluate T(x), at x = 50 cm, using Eq. (5) and the f(t;x)
data in Fig. 3(d)–(f). The integral expression is evaluated numeri-
cally using a trapezoid rule with panel width of 2 s (Chapra and Ca-
nale, 2009). The corresponding values of the MAT, estimated
directly from the data, are 9.9, 9.6 and 9.5 s for each of the three re-
charge experiments, respectively. These results indicate that the
MAT for the experiments appear to be independent of the recharge
rate, as predicted by our theory in Section 2.1.

We now report the results of the discharge experiments. Results
in Fig. 4(a)–(c) show the transient response at x = 50 cm in the
laboratory-scale aquifer after turning off the recharge at the
conclusion of each of the three recharge experiments where
different rates of recharge had been applied: R1 = 1.23 cm/min,
R2 = 1.77 cm/min and R3 = 2.57 cm/min. Comparing the profiles in
Fig. 4(a)–(c) confirms that each of the discharge experiments were
initiated with different values of the saturated thickness at
x = 50 cm. However, the data in Fig. 4(a)–(c) indicates that after a
sufficiently long period of time the saturated thickness at
x = 50 cm asymptotes to approximately 18.7 cm. A visual compar-
ison of the three transient discharge data sets in Fig. 4(a)–(c) indi-
cates that the timescale of the transient processes are very similar
regardless of the initial saturated depth at x = 50 cm. This qualita-
tive observation is consistent with our theoretical predictions from
Sections 2.1 and 2.2 and we will now quantitatively test this pre-
diction using the data from Fig. 4(a)–(c).

The profiles in Fig. 4(d)–(f) show f(t;x) at x = 50 cm, for each dis-
charge experiment. To compute the values of f(t;x) we used Eq.
(25) with the data from Fig. 4(a)–(c). For each discharge experi-
ment we estimate T(x), using Eq. (5) and our f(t;x) data in
Fig. 4(d)–(f). To evaluate the integral in Eq. (5) we use the trapezoid
rule with panel width of 2 s (Chapra and Canale, 2009). The corre-
sponding values of the MAT, estimated directly from the data, are
9.5, 9.7 and 10.4 s for each of the three discharge experiments.
These results are also consistent with our MAT predictions since
our theoretical results in Sections 2.1 and 2.2 predicted that the
mean timescale for the discharge process is identical to the mean
timescale for the recharge process.

Our laboratory data, described so far, qualitatively supports the
theoretical predictions made using the MAT framework in Sections
2.1 and 2.2. To quantitatively test our theoretical predictions we
must estimate the parameters describing the fluid flow in the lab-
oratory scale model. We measured the saturated hydraulic conduc-
tivity using a standard column test which showed that the average
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Fig. 4. Results for the discharge experiments are given in (a)–(c) showing the evolution of h(x, t), at x = 50 cm, for R1 = 1.23 cm/min, R2 = 1.77 cm/min and R3 = 2.57 cm/min,
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saturated hydraulic conductivity is 980 m/day (68 cm/min). We
independently measured the specific yield, Sy � 0.2, and we esti-
mated that the average saturated depth was �h � 19:0 cm so that
we can estimate D ¼ K�h=Sy to be 6460 cm2/min. This gives a max-
imum MAT, 5L2/(48D), of 9.7 s. Here we have used L = 100 cm to re-
flect the symmetry of the problem imposed by using a no flow
boundary condition at x = 50 cm. This theoretical prediction agrees
with our experimental measurements reported in Figs. 3 and 4.

If we wish to use our MAT and VAT results to quantitate a crit-
ical time interval for the experimental data we take the critical
time interval to be the mean plus or minus one standard deviation
(Simpson et al., 2013). Using K = 980 m/day, Sy = 0.2 and �h ¼ 19:0
cm indicates that the maximum VAT is approximately 89.0 s2 for
all our experimental systems. This means that we can take the crit-
ical time interval to be 9:7�

ffiffiffiffiffiffi
89
p

� 9:7� 9:4 s, which indicates
that by 19.1 s the transient aquifer response has essentially fin-
ished. Comparing this estimate with the data in Figs. 3, 4 and
Fig. 4(a)–(c) seems reasonable since we observe little transient re-
sponse in the system after approximately 20 s for each experimen-
tal dataset.
4. Discussion and conclusions

The theory of MAT provides us with an objective tool to charac-
terize the timescale required for a transient groundwater flow re-
sponse to effectively reach steady state. This is a practical tool
since it allows us to estimate the timescale required for a transient
response to effectively reach steady state using an exact analytical
framework that avoids the need for solving a time dependent par-
tial differential equation describing the transient process.

The key advantage of our approach is that we arrive at exact
mathematical expressions for the MAT and VAT and we can see ex-
actly how these quantities depend on the parameters (e.g.
K; �h; Sy;h1;h2; L and R) for a general aquifer recharge and aquifer
discharge processes. Our theoretical results yield some useful
and possibly counterintuitive results. For example, we show that
the MAT is not explicitly dependent upon the recharge rate, R,
and we show that the MAT for a recharge process is equivalent
to the MAT of the related discharge process. This is a surprising re-
sult since the steady state phreatic surface depends on the re-
charge rate R but the new theory indicates that the time taken to
reach steady state is independent of R. These results are not obvi-
ous without the MAT framework.

In addition to providing more general insight into aquifer re-
charge and discharge processes, we also evaluated the MAT for a
specific laboratory-scale data set describing unconfined aquifer re-
charge and discharge processes. The theory predicted that the MAT
for the three recharge and the three discharge experiments should
be 9.7 s. Despite experimental variabilities, all six MAT values (9.9,
9.6 and 9.5 s for recharge; and 9.5, 9.7, and 10.4 s for discharge)
estimated from transient dataset are remarkably close the theoret-
ical prediction, demonstrating the validity of the theory.

The MAT analysis and results outlined here can be applied to
study other linear models of groundwater flow, such as two-
dimensional and three-dimensional models (Landman and
McGuinness, 2000). For such models, the techniques outlined here
for the one-dimensional case are directly applicable except that the
boundary value problems governing the MAT will be two-dimen-
sional and three-dimensional partial differential equations, similar
to Poisson’s equation (Wang and Anderson, 1982). These kinds of
equations can be solved exactly using standard techniques, such
as separation of variables, provided that the problems are consid-
ered on separable domains (Kreyszig, 2006). Other problems, such
as studying the MAT of genuinely nonlinear flow problems that are
not readily linearized are far more challenging (Ellery et al., 2012a;
Simpson et al., 2013). The application of the theory of MAT to such
problems requires additional analysis and our future work will
seek to address these problems.

An extension of our present study would be to consider the MAT
for a heterogeneous groundwater flow problem. The heteroge-
neous analog of Eq. (1) can be written as

Sy
@h
@t
¼ @

@x
KðxÞh @h

@x

� �
þ RðxÞ; ð26Þ

where K(x) is the spatially varying saturated hydraulic conductivity
and R(x) is the spatially varying recharge rate (Bear, 1979). For
practical problems where the hydraulic gradient is very small,
j@h/@x� 1j, the linearized analog of this model can be written as

@h
@t
¼ @

@x
DðxÞ @h

@x

� �
þWðxÞ; ð27Þ

where DðxÞ ¼ �hKðxÞ=Sy [L2/T] is a spatially-dependent diffusivity
and W(x) = R(x)/Sy is a spatially dependent zero order source term.
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If we apply the same mathematical procedure, outlined previously
in Section 2, to find the boundary value problem governing the
MAT for the heterogeneous flow model we arrive at

d2½TðxÞgðxÞ�
dx2 þ 1

DðxÞ
dDðxÞ

dx
d½TðxÞgðxÞ�

dx
¼ � gðxÞ

DðxÞ ; ð28Þ

which is a generalization of Eq. (7) since the two boundary value
problems are identical when D(x), or equivalently K(x), is a constant.
Similar to the homogeneous flow problem, the MAT for the hetero-
geneous flow problem is independent of the recharge, but is now
explicitly dependent on the form of the heterogeneity since the
solution of Eq. (28) depends on the functional form of D(x).
Although we have outlined how the theory of MAT extends to deal
with the heterogeneous flow, we leave a thorough exploration of
the solution of Eq. (28) and a comparison of such a solution with
physical measurements as a topic for future research.
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