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and long-time Fickian diffusion for a random walk on a crowded lattice
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The motion of cells and molecules through biological environments is often hindered by the presence
of other cells and molecules. A common approach to modeling this kind of hindered transport is to
examine the mean squared displacement (MSD) of a motile tracer particle in a lattice-based stochastic
random walk in which some lattice sites are occupied by obstacles. Unfortunately, stochastic models
can be computationally expensive to analyze because we must average over a large ensemble of
identically prepared realizations to obtain meaningful results. To overcome this limitation we describe
an exact method for analyzing a lattice-based model of the motion of an agent moving through a
crowded environment. Using our approach we calculate the exact MSD of the motile agent. Our
analysis confirms the existence of a transition period where, at first, the MSD does not follow a power
law with time. However, after a sufficiently long period of time, the MSD increases in proportion
to time. This latter phase corresponds to Fickian diffusion with a reduced diffusivity owing to the
presence of the obstacles. Our main result is to provide a mathematically motivated, reproducible,
and objective estimate of the amount of time required for the transport to become Fickian. Our new
method to calculate this crossover time does not rely on stochastic simulations. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4948782]

I. INTRODUCTION

Modeling the transport of cells and molecules can
be complicated because many biological environments are
crowded with structures that can obstruct cellular and
molecular motion. In the literature, this kind of hindered
transport is often modeled using a lattice-based nearest
neighbor random walk in which a proportion of lattice
sites is populated with immobile obstacles.1–11 In these
simulations, crowding effects are modeled explicitly by
enforcing an exclusion principle that prevents the motile
agent from stepping onto any site that is occupied by
obstacles.12 Mean squared displacement (MSD) data from
simulations indicate the existence of a transition period
where, at first, the MSD does not follow a power law in
time.1,2,4,7–10 However, after a sufficiently long period of
time, the MSD increases in proportion with time, and the
transport process eventually becomes Fickian.13–15 Since it
is common to quantify biological transport in terms of a
Fickian diffusivity, it is of interest to predict the amount of
time required for the transport process to effectively reach
the Fickian regime. We refer to this amount of time as the
crossover time.

Here, we propose a new, exact method for calculating the
transient MSD and crossover time for a lattice-based random
walk in which the lattice is partially occupied by immobile
obstacles. Our results do not depend on performing stochastic
simulations. We apply existing results from Markov chain
theory to show that the transient phase approaches the Fickian
phase exponentially fast. Using this information we present

an objective, mathematically based estimate of the crossover
time using the concept of mean action time.16–18

II. STOCHASTIC SIMULATIONS

We consider a two-dimensional square lattice, of
dimension X × Y , with unit lattice spacing. Sites are indexed
(i, j) so that each site has location (x, y) = (i, j). The lattice is
randomly populated with obstacles, with density φ. A motile
agent is placed on an unoccupied site and allowed to undergo a
discrete time nearest neighbor random walk22 with time steps
of unit duration. Periodic boundary conditions are enforced
on all boundaries. Crowding effects are modeled explicitly
by aborting all potential motility events that would lead to
the motile agent stepping to a site that is occupied by an
obstacle.12

As the simulation proceeds, we record the displacement
of the agent, r(t), and we use this information to calculate
the MSD,



r2(t)�, where ⟨·⟩ denotes an average over a large

ensemble of identically prepared realizations in which the
motile agent has the same starting position in each realization.
Several earlier studies1,2,4,7 suggest that



r2(t)�may evolve as a

power law,


r2(t)� = 4Dtα, where 0 < α < 2 is a constant that

indicates the type of transport taking place.15 Subdiffusion
is associated with α < 1, superdiffusion is associated with
α > 1, and classical Fickian diffusion is associated with
α = 1. To explore this power law behavior, we follow a
standard approach by plotting log10

�

r2(t)� /t� as a function

of log10 (t).1,2 If the MSD follows this power law, the data in
this plot should fall on a straight line. If the power law holds,
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FIG. 1. (a)–(c) show log10
�

r2(t)�/t� as a function of log10(t) for five randomly chosen starting positions on lattices with φ = 0.05, 0.15, and 0.25, respectively.

Exact results, calculated using the Markov chain approach (solid blue), are superimposed on results from stochastic simulations (dashed red). All results
correspond to X =Y = 103, and simulation data are averaged over 104 identically prepared realizations. The exact solution is calculated until t = 103, whereas
the stochastic simulations are calculated until t = 5×104.

the straight line will have a negative slope if α < 1, a positive
slope if α > 1, or it will be a horizontal line if the transport is
Fickian and α = 1.

Results in Figures 1(a)–1(c) show stochastic MSD data
for φ = 0.05,0.15, and 0.25, respectively. In each subfigure
we show plots of log10

�

r2(t)� /t� as a function of log10 (t) for

five randomly chosen starting locations. After a sufficiently
large amount of time, each MSD curve, for each value of φ,
appears to approach to the same, approximately horizontal,
straight line. This is consistent with previous analysis since
the MSD is proportional to t, giving



r2(t)� = 4Dt, in the long

time limit,19,20 as t → ∞. In this case, the crowded Fickian
diffusivity, D, is reduced relative to the standard obstacle-free
diffusivity, D0 = 1/4 in two dimensions on a unit lattice, and
the value of D depends on φ. For each value of φ considered
in Figure 1, we observe a different horizontal asymptote, and
we see that D decreases with φ.

All stochastic simulation results in Figure 1 are obtained
by performing many identically prepared realizations of a
random walk in which the initial location of the motile agent
is held constant. Additional results, given in Figure 2, are
obtained by performing many identically prepared realizations
of a random walk in which the initial location of the motile
agent is chosen randomly in each realization. Since the MSD
data in Figures 2(a)–2(c) are further averaged over diffe-
rent starting locations, we denote the MSD data in Figure 2 as

r̄2(t)�. For each value of φ, the MSD data in Figure 2

form a curve which, like the data in Figure 1, eventually
asymptotes to a horizontal line after a sufficient amount of
time.1,2,4,7

Now that we have presented standard MSD data from a
stochastic random walk algorithm in Figures 1 and 2, we aim
to present some analysis allowing us to predict key features of

the simulated data without the need for performing stochastic
simulations.

III. ANALYSIS

Let p(t) be a vector whose kth element denotes the
probability of finding the motile agent at the kth lattice site at
time t. The evolution of p(t) is given by the Markov chain

p(t) = p(0)Tt, (1)

where T is the transition matrix21,22 and the superscript t
indicates exponentiation to the value of time, t. The elements
of T, Ta,b, denote the probability that the agent will step from
site a to site b per time step. Evaluating Equation (1) in a
computationally efficient manner is challenging. Although T
is sparse, Tt is not, and even a modestly sized lattice may
require several petabytes to store and manipulate. To manage
computational limitations, we evaluate Equation (1) iteratively
at discrete time steps, tm = m, for m = 0,1,2,3, . . .. This
allows us to take advantage of the relation p(t) = �

p(0)Tt−1� T,
from which it follows that

p(tm) = p(tm−1)T, ∀ m = 1,2,3, . . . (2)

This approach allows us to calculate p(t) by storing just p(tm)
and the sparse transition matrix, T.

Simulation data in Figures 1 and 2 are obtained by
imposing periodic boundary conditions. To evaluate the MSD
in the simulations we record the number of times that the
motile agent crosses the boundaries of the lattice to arrive
at a particular site. However, in our analysis, the vector p(t)
does not contain any information about the number of times
that the agent crosses the lattice boundaries. To deal with this
analytically, we consider a large lattice that is composed of a

FIG. 2. (a)–(c) show plots of log10
�

r̄2(t)�/t� as a function of log10(t) for φ = 0.05, 0.15, and 0.25, respectively (solid black). In each case the logarithm

of the crossover time, log10(C), is superimposed (vertical red). The least–squares best fit straight lines for early time data (0 ≤ t ≤ 102) and late time data
(104 ≤ t ≤ 106) are also given (blue–dashed). The ordinate of the intersection of these fitted straight lines is Saxton’s crossover time.1,2 All simulations use
X =Y = 25, and averaged MSD data are generated using 5×104 identically prepared realizations. The MSD data are generated until t = 106.
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periodic tiling of the smaller lattice used in the simulations.
The tiling is chosen to be sufficiently large to ensure that
the probability that the agent reaches the boundaries of the
larger tiled lattice during the time interval considered is zero.
Because p(t) is the exact probability of locating the agent
at any site at time t, we calculate the MSD exactly, without
considering an ensemble

r2(t) =

i, j

x2
i, j(t) pi j(t), (3)

where x2
i, j(t) = [i(t) − i(0)]2 + [ j(t) − j(0)]2 and pi j(t) denotes

the probability of finding the agent at site (i, j), on the tiled
lattice, at time t. At each discrete value of time, we use
Equation (3) to calculate the exact value of r2(t). We apply
Equations (2) and (3) to mimic the stochastic simulation
data in Figure 1. Exact results are superimposed on averaged
simulation results in Figures 1(a)–1(c). For each of φ, and for
each of the five starting positions we find that the Markov chain
calculation compares very well with the averaged stochastic
simulation data. Exact and simulation data in Figure 1 are
compared for t < 103 since it becomes increasingly expensive
to evaluate the exact results for larger t.

IV. CROSSOVER TIME

Transport of single cells or molecules is often quantified
in terms of a Fickian diffusivity. Therefore, we are interested
in predicting the amount of time required for the transport
process to effectively reach the Fickian regime. Previous
estimates of the crossover time have been obtained using
simulation data. For example, Saxton1,2 obtained averaged
stochastic MSD data and fitted two straight lines to those
data. The first straight line is fitted to the small time, early
portion of the MSD data. The second straight line is fitted
to the large time, late portion of the MSD data. Using this
approach, Saxton estimated the crossover time by finding the
time at which these two straight lines intersect. This method
suffers from the limitation that it requires the generation
of stochastic simulation data. Furthermore, the choice of
fitting straight lines to early and late time data involves
making subjective choices. In particular, without an objective
definition of early time and late time, this definition of
crossover time is not reproducible. In contrast, we provide
a mathematically motivated and reproducible estimate of the
crossover time that avoids performing stochastic simulations.

The rate at which p(0)Tt approaches p(0)Π is bounded by
an exponential (Appendix A), with rate λ t

2 = eloge(λ2) t, where
λ2 is the real eigenvalue of T that has the second-largest
magnitude. Using this bound, together with the theory of
mean action time (Appendix B), we provide a finite estimate
of the crossover time,

C = − 2
logeλ2

. (4)

This definition of crossover time is simpler to implement
than Saxton’s1,2 approach because we do not need to perform
stochastic simulations, nor do we need to make subjective

choices about fitting straight lines to early time and late time
simulation data.

In practice, it is straightforward to calculate λ2 using
the following algorithm: (i) calculate the eigenvector,
u, corresponding to the leading eigenvalue of T using
the power–iteration method,23 (ii) calculate Hotelling’s
deflated matrix,23 A = T − λ1vvT, where v = u/|u| and
the superscript T denotes a transpose, and (iii) apply the
power–iteration method a second time to the matrix A and
use the Rayleigh coefficient λ2 = wTAw/wTw, where w is the
eigenvector of the leading eigenpair of A, to recover λ2.

Results in Figures 2(a)–2(c) show log10(C) superimposed
on the simulated MSD curves. Visually, the values of C
appear to act as a useful estimate of the crossover time
because the simulated MSD curves appear to be effectively
horizontal for t > C. In particular, we have C = 0.57 × 104,
1.3 × 104, and 5.6 × 104 for φ = 0.05, 0.15, and 0.25,
respectively. These results show that the crossover time
increases with φ, as we might anticipate. In Figures 2(a)–2(c)
we also show the least–squares best fit straight lines
for both early and late time. The intersection of these
straight lines gives Saxton’s crossover time. In these cases
we have CSaxton = 0.37 × 102, 1.2 × 102, and 4.1 × 102 for
φ = 0.05,0.15, and 0.25, respectively. These estimates are
two orders of magnitude smaller than the estimates given by
our new definition. We note that, unlike Saxton’s method, our
approach is based on an objective mathematical definition, is
reproducible, and does not require any stochastic simulations.

V. DISCUSSION

We present an exact method for modeling the motion of a
tracer particle on a crowded lattice. The Markov chain method
leads to exact calculations of the probability of finding an
agent at a site at any time, and from this information we can
calculate the MSD exactly. These exact results compare very
well with simulation data.

Our analysis shows that λ t
2 is an upper bound for the

difference between a vector describing the time dependent
probabilities of finding an agent at any site, and the long
time limit. Here, λ2 is the real eigenvalue of T that has the
second–largest magnitude. Since we have exponential decay,
we use the theory of mean action time to define an objective,
mathematically motivated estimate of the amount of time
required to effectively reach the long time limit. Therefore, our
mathematically motivated definition of crossover time is less
subjective than previous approaches that rely on generating
stochastic data and fitting straight lines to those data.1,2

Our analysis of the crossover time is useful if we wish
to implement the previous analysis of Mercier and Slater.19,20

Mercier and Slater describe a method for calculating the long
time Fickian diffusivity, D, for a lattice-based random walk
in which a proportion of the sites is occupied by obstacles.
An implicit assumption in applying Mercier and Slater’s
algorithm is that the transport process has been taking place
for a sufficiently long period of time because this analysis is
relevant only in the long time limit, t → ∞. To implement
Mercier and Slater’s approach, one must first decide whether

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  131.181.53.107 On: Thu, 05

May 2016 21:14:14



171104-4 Ellery, Baker, and Simpson J. Chem. Phys. 144, 171104 (2016)

a sufficient amount of time has passed so that the long time
limit is relevant. Our approach for calculating C provides this
information without performing simulations.

Although this manuscript focuses on two–dimensional
examples, our definition of C, and the approach for calculating
C, applies directly to three–dimensional lattices without any
modification.
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APPENDIX A: DERIVATION OF UPPER BOUND

We begin by considering the long time limit of p(t),
lim
t→∞

p(t) = lim
t→∞

p(t − 1)T = p(0)Π, where Π = lim
t→∞

Tt. The

spectral norm of any square matrix, A, is given by24

∥A∥2 =


λmax

�
AHA

	
, (A1)

where ∥ · ∥2 denotes the spectral norm, the superscript H

denotes a Hermitian transpose, and λmax {·} denotes the largest
eigenvalue. The spectral norm of the difference between p(t)
and lim

t→∞
p(t) satisfies a triangle inequality

∥p(0)Tt − p(0)Π∥2 ≤ ∥p(0)∥2∥Tt −Π∥2,

≤ ∥Tt −Π∥2, (A2)

where we have used the fact that ∥p(0)∥2 ≡ 1. The quantity
∥Tt −Π∥2 is an upper bound for the magnitude of the
difference between p(t) and lim

t→∞
p(t) at any time t. To quantify

this upper bound, we note that, because T is symmetric, it is
always diagonalizable,23 giving Π = lim

t→∞
Tt = lim

t→∞
VDtV−1.

Furthermore, because T is doubly stochastic, the eigenvalues
of T are all real and satisfy |λk | ≤ 1, for k = 1,2,3, . . .. We
arrange these eigenvalues by magnitude so that λ1 > λ2 >
λ3 > · · · , with λ1 = 1. The long time limit is therefore given
by Π = VD∞V−1, where D∞ = lim

t→∞
Dt = diag{1,0, . . . ,0}.

This allows us to write Tt −Π = V (Dt − D∞)V−1 = VDaV−1,
where Da = diag{0, λ t

2, . . . , λ
t
n−1}. Since T is symmetric, its

eigenvectors form an orthonormal basis for Rn×n, where n is
the number of vacant lattice sites. This also means that V is
unitary23 and satisfies VH = V−1. Using these properties we
can write

�
Tt −Π

�H �
Tt −Π

�
= V−HDaVHVDaV−1,

= VD2
aV−1. (A3)

The largest eigenvalue of VD2
aV−1 is given by the second

diagonal element of the diagonal matrix, λ2t
2 . Combining

Equations (A1)-(A3) gives ∥p(0)Tt − p(0)Π∥2 ≤ λ t
2. For

modest sized lattices λ2 can be calculated using the power-
iteration method.23

APPENDIX B: MEAN ACTION TIME

To demonstrate the theory of mean action time, we
consider ż(t) = −kz(t), with k > 0, which is a model
of exponential decay. McNabb and Wake16 define F(t)
= 1 − z(t)/z(0), which is a monotonically increasing function
of t that satisfies F(0) = 0 and lim

t→∞
F(t) = 1−. If we consider

F(t) to act like a cumulative distribution function, the as-
sociated probability density function is f (t) = −ż/z(0). The
mean of this distribution can be thought of as a measure of
the amount of time required for z(t) to effectively asymptote
to the long time limit, lim

t→∞
z(t) = 0. The mean of f (t), called

the mean action time, is M = −(1/z(0))  ∞0 t ż(t) dt. For the
exponential decay model we obtain M = 1/k. We can use M
as a measure of the amount of time we required for z(t) to
effectively reach the long time limit.

Higher moments can be used to quantify the width of
the distribution17,18 of f (t). The variance of f (t) is given by
V = −(1/z(0))  ∞0 t2ż(t) dt. For the exponential decay model
we have V = 1/k2. A useful definition of the amount of
time required for z(t) to effectively asymptote to the long
time limit, accounting for the mean and the width of the
distribution, is M +

√
V . Previous analysis of exponentially

decaying laboratory data confirms that this definition leads to
very useful results that are simple to implement.25,26 Therefore,
a mathematically motivated finite estimate of the amount of
time required for the decay process to effectively reach the
long time limit is C = M +

√
V . Or, for the exponential decay

model, C = 2/k.
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