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ABSTRACT

Almost all fields of science rely upon statistical inference to estimate unknown parameters in theoretical
and computational models. While the performance of modern computer hardware continues to grow,
the computational requirements for the simulation of models are growing even faster. This is largely due
to the increase in model complexity, often including stochastic dynamics, that is necessary to describe
and characterize phenomena observed using modern, high resolution, experimental techniques. Such
models are rarely analytically tractable, meaning that extremely large numbers of stochastic simulations are
required for parameter inference. In such cases, parameter inference can be practically impossible. In this
work, we present new computational Bayesian techniques that accelerate inference for expensive stochastic
models by using computationally inexpensive approximations to inform feasible regions in parameter
space, and through learning transforms that adjust the biased approximate inferences to closer represent
the correct inferences under the expensive stochastic model. Using topical examples from ecology and cell
biology, we demonstrate a speed improvement of an order of magnitude without any loss in accuracy. This
represents a substantial improvement over current state-of-the-art methods for Bayesian computations
when appropriate model approximations are available. Supplementary files for this article are available
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1. Introduction

Modern experimental techniques allow us to observe the nat-
ural world in unprecedented detail and resolution (Chen and
Zhang 2014). Advances in machine learning and artificial intel-
ligence provide many new techniques for pattern recognition
and prediction, however, in almost all scientific inquiry there is
aneed for detailed mathematical models to provide mechanistic
insight into the phenomena observed (Coveney, Dougherty, and
Highfield 2016; Baker et al. 2018). This is particularly true in
the biological and ecological sciences, where detailed stochastic
models are routinely applied to develop and validate theory as
well as interpret and analyze data (Wilkinson 2009; Black and
McKane 2012; Drawert et al. 2017).

Two distinct computational challenges arise when stochastic
models are considered, they are: (i) the forwards problem; and
(ii) the inverse problem, sometimes called the backwards prob-
lem (Warne, Baker, and Simpson 2019a). While the computa-
tional generation of a single sample path, that is the forwards
problem, may be feasible, generating hundreds or thousands or
more such sample paths may be required to gain insight into the
range of possible model predictions and to conduct parameter
sensitivity analysis (Gunawan et al. 2005; Marino et al. 2008;
Lester, Yates, and Baker 2017). The problem is further com-
pounded if the models must be calibrated using experimental
data, that is the inverse problem of parameter estimation, since
millions of sample paths may be necessary.

In many cases, the forwards problem can be sufficiently
computationally expensive to render both parameter sensitivity
analysis and the inverse problem completely intractable, despite
recent advances in computational inference (Sisson, Fan, and
Beaumont 2018). This has prompted recent interest in the use of
mathematical approximations to circumvent the computational
burden, both in the context of the forwards and inverse prob-
lems. For example, linear approximations are applied to the for-
wards problem of chemical reaction networks with bimolecular
and higher-order reactions (Cao and Grima 2018), and various
approximations, including surrogate models (Rynn et al. 2019;
Bon, Lee, and Drovandi 2020), emulators (Buzbas and Rosen-
berg 2015) and transport maps (Parno and Marzouk 2018), are
applied to inverse problems with expensive forwards models, for
example, in the study of climate science (Holden et al. 2018).
Furthermore, a number of developments, such as multilevel
Monte Carlo methods (Giles 2015), have demonstrated that
families of approximations can be combined to improve com-
putational performance without sacrificing accuracy.

In the recent years, the Bayesian approach to the inverse
problem of model calibration and parameter inference has
been particularly successful in many fields of science including,
astronomy (EHT Collaboration et al. 2019), anthropology
and archaeology (King et al. 2014; Malaspinas et al. 2016),
paleontology and evolution (Tavaré et al. 1997; Pritchard et al.
1999; O’Dea et al. 2016), epidemiology (Liu et al. 2018; Warne
etal. 2020b), biology (Guindani et al. 2014; Vo et al. 2015; Woods
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and Barnes 2016; Lawson et al. 2018), and ecology (Ellison 2004;
Stumpf 2014). For complex stochastic models, parameterized by
0 € O, computing the likelihood of observing data D € D
is almost always impossible (Browning et al. 2018; Vankov,
Guindani, and Ensor 2019). Thus, approximate Bayesian
computation (ABC) methods (Sisson, Fan, and Beaumont
2018) are essential. ABC methods replace likelihood evaluation
with an approximation based on stochastic simulations of the
proposed model, this is captured directly in ABC rejection
sampling (Tavaré et al. 1997; Pritchard et al. 1999; Beaumont,
Zhang, and Balding 2002) (Section 2) where samples are
generated from an approximate posterior using stochastic
simulations of the forwards problem as a replacement for the
likelihood.

Unfortunately, ABC rejection sampling can be computation-
ally expensive or even completely prohibitive, especially for
high-dimensional parameter spaces, since a very large number
of stochastic simulations are required to generate enough sam-
ples from the approximate Bayesian posterior distribution (Sis-
son, Fan, and Beaumont 2018; Warne, Baker, and Simpson
2020a). This is further compounded when the forwards prob-
lem is computationally expensive. In contrast, an appropriately
chosen approximate model may yield a tractable likelihood that
removes the need for ABC methods (Browning, Haridas, and
Simpson 2019; Warne, Baker, and Simpson 2017, 2019b). This
highlights a key advantage of such approximations because no
ABC sampling is required. However, approximations can per-
form poorly in terms of their predictive capability, and inference
based on such models will always be biased, with the extent of
the bias dependent on the level of accuracy.

We consider ABC-based inference algorithms for the chal-
lenging problem of parameter inference for computationally
expensive stochastic models when an appropriate approxima-
tion is available to inform the search in parameter space. Under
our approach, the approximate model need not be quantitatively
accurate in terms of the forwards problem, but must qualita-
tively respond to changes in parameter values in a similar way
to the stochastic model. In particular, we extend the sequential
Monte Carlo ABC sampler (SMC-ABC) of Sisson, Fan, and
Tanaka (2007) (Section 2) to exploit the approximate model
in two ways: (i) to generate an intermediate proposal distribu-
tion, that we call a preconditioner, to improve ABC acceptance
rates for the stochastic model; and (ii) to construct a biased
ABC posterior, then reduce this bias using a moment-matching
transform. We describe both methods and then present relevant
examples from ecology and cell biology. Example calculations
demonstrate that our methods generate ABC posteriors with
a significant reduction in the number of required expensive
stochastic simulations, leading to as much as a tenfold com-
putational speedup. The methods we demonstrate here enable
substantial acceleration of accurate statistical inference for a
broad range of applications, since many areas of science utilize
model approximations out of necessity despite potential infer-
ence inaccuracies.

As a motivating case study for this work, we focus on stochas-
tic models that can replicate many spatiotemporal patterns that
naturally arise in biological and ecological systems. Stochastic
discrete random walk models (Section 3), henceforth called
discrete models, can accurately characterize the microscale inter-
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actions of individual agents, such as animals, plants, micro-
organisms, and cells (von Hardenberg et al. 2001; Law, Mur-
rell, and Dieckmann 2003; Taylor and Hastings 2005; Codling,
Plank, and Benhamou 2008; Agnew et al. 2014; Vincenot et al.
2016). Mathematical modeling of populations as complex sys-
tems of agents can enhance our understanding of real biological
and ecological populations with applications in cancer treat-
ment (Bottger et al. 2015), wound healing (Callaghan et al.
2006), wildlife conservation (McLane et al. 2011; DeAngelis and
Grimm 2014), and the management of invasive species (Taylor
and Hastings 2005; Chkrebtii et al. 2015).

For example, the discrete model formulation can replicate
many realistic spatiotemporal patterns observed in cell biology.
Figure 1(A),(B) demonstrates typical microscopy images
obtained from in vitro cell culture assays; ubiquitous and
important experimental techniques used in the study of cell
motility, cell proliferation and drug design. Various patterns
are observed: prostate cancer cells (PC-3 line) tend to be
highly motile, and spread uniformly to invade vacant spaces
(Figure 1(A)); in contrast breast cancer cells (MBA-MD-231
line) tend be relatively stationary with proliferation events
driving the formation of aggregations (Figure 1(B)). These
phenomena may be captured using a lattice-based discrete
model framework by varying the ratio P,/P,, where P, € [0, 1]
and Py, € [0, 1] are, respectively, the probabilities that an agent
attempts to proliferate and attempts to move during a time
interval of duration > 0 (See Section 3.2). For P,/P,, < 1,
behavior akin to PC-3 cells is recovered (Figure 1(C)-(F)) (Jin
et al. 2016). Setting P,/Py, > 1, as in Figure 1(H)-(K), leads
to clusters of occupied lattices sites that are similar to the
aggregates of MBA-MD-231 cells (Agnew et al. 2014; Simpson
etal. 2013).

It is common practice to derive approximate continuum-
limit differential equation descriptions of discrete mod-
els (Callaghan et al. 2006; Simpson, Landman, and Hughes 2010;
Jin et al. 2016) (supplementary material). Such approximations
provide a means of performing analysis with significantly
reduced computational requirements, since evaluating an
exact analytical solution, if available, or otherwise numerically
solving a differential equation is typically several orders of
magnitude faster than generating a single realization of the
discrete model, of which hundreds or thousands may be
required for reliable ABC sampling (Browning et al. 2018).
However, such approximations are generally only valid within
certain parameter regimes, for example here when P,/P,;; <
1 (Callaghan et al. 2006; Simpson, Landman, and Hughes
2010). Consider Figure 1(G), the population density growth
curve from the continuum-limit logistic growth model is
superimposed with stochastic data for four realizations of a
discrete model with P,/P,, < 1 and Pp/P, > 1, under
initial conditions simulating a proliferation assay, where each
lattice site is randomly populated with constant probability,
such that there are no macroscopic gradients present at t = 0.
The continuum-limit logistic growth model is an excellent
match for the P,/Py, < 1 case (Figure 1(C)-(F)), but severely
overestimates the population density when P,/P,, > 1 since
the mean-field assumptions underpinning the continuum-limit
model are violated by the presence of clustering (Figure 1(H)-
(K)) (Simpson et al. 2013; Agnew et al. 2014).
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Figure 1. Discrete random walk models can replicate observed spatial patterns in cell culture: (A) PC-3 prostate cancer cells (reprinted from Jin et al. (2017) with permission);
and (B) MBA-MD-231 breast cancer cells (reprinted from Simpson et al. (2013) with permission). (C)-(F) Discrete simulations with P, /Pm < 1 replicate the uniform
distribution of (A) PC-3 cells. (H)~(K) Discrete simulations with Pp /Pm >> 1 replicate spatial clustering of (B) MBA-MD-231 cells. (G) Averaged population density profiles

C(t) for the discrete model with highly motile agents, Py, = 1 (dashed green), and near stationary agents, Py = 5 X 10~* (dashed orange), compared with the logistic

growth continuum limit (solid black), time is nondimensionalized with T = Ppt/z.

As we demonstrate in Section 3, our methods generate accu-
rate ABC posteriors for inference on the discrete problem for
a range of biologically relevant parameter regimes, including
those where the continuum-limit approximation is poor. In
this respect we demonstrate a novel use of approximations that
qualitatively respond to changes in parameters in a similar way
to the full exact stochastic model.

2. Methods

In this section, we present details of two new algorithms for
the acceleration of ABC inference for expensive stochastic mod-
els when an appropriate approximation is available. First, we
present essential background in ABC inference and sequential
Monte Carlo (SMC) samplers for ABC (Sisson, Fan, and Tanaka
2007; Toni et al. 2009). We then describe our extensions to
SMC samplers for ABC and provide numerical examples of
our approaches using topical examples from ecology and cell
biology.

2.1. Sequential Monte Carlo for ABC

Bayesian analysis techniques are powerful tools for the quan-
tification of uncertainty in parameters, models and predic-
tions (Gelman et al. 2014). Unfortunately, for many stochas-
tic models of practical interest, the likelihood function is
intractable. ABC methods replace likelihood evaluation with
an approximation based on stochastic simulations of the
proposed model, this is captured directly in ABC rejection
sampling (Tavaré et al. 1997; Pritchard et al. 1999) where
M samples are generated from an approximate posterior,
denoted by p(@|p(D,Ds) < €). Here Dy ~ s(D|@) is a data
generation process based on simulation of the model, o (D, D;)

is a discrepancy metric, and € is the discrepancy threshold. The
resulting accepted parameter samples are distributed according
top(@|p(D,Ds) <€) = p(@|D)ase — 0.

The average acceptance probability of a proposed parameter
sample 6* is O(e?) (Fearnhead and Prangle 2012), where d is the
dimensionality of the data space, D. This renders rejection sam-
pling computationally expensive or even completely prohibitive,
especially for high-dimensional parameter spaces (Marjoram
et al. 2003; Sisson, Fan, and Tanaka 2007). Summary statistics
can reduce the data dimensionality, however, they will often
incur information loss (Barnes et al. 2012; Blum et al. 2013;
Fearnhead and Prangle 2012). However, strategies including
regression adjustment and marginal adjustment strategies can
improve the accuracy of dimension reductions (Beaumont,
Zhang, and Balding 2002; Nott et al. 2014).

In the SMC-ABC method, importance resampling is applied
to a sequence of R ABC posteriors with discrepancy thresholds
€1 > > €p, with €r indicating the target ABC poste-
rior. Given M weighted samples {(6", wi)}i/\:/ll, called particles,
initially from the prior p(@) (with r = 0 corresponding to
€0 — 00), particles are filtered through each ABC posterior,
p@|p(D,Ds) <€) for r = 1,...,R, using three main steps
in each iteration: (i) generate a new set of M particles using
ABC rejection sampling with discrepancy threshold, ¢,, and
proposals drawn from 7,_1 (@) given by

M . .
n1(0) = q,010]_Dwi_,, (1)

i=1

where qr(0|0i) is a proposal kernel; (ii) compute new parti-
cle importance weights; then (iii) resample particles to avoid
particle degeneracy. For reference, the SMC-ABC algorithm
as initially developed by Sisson, Fan, and Tanaka (2007) and



Toni et al. (2009) is given in Algorithm 1. Here, lines (4)-(8)
correspond the rejection sampling (step (i)) with lines (5)-(6)
describing how to draw a sample from the proposal 6** ~
nr—1(0) as defined in Equation (1), line (10) corresponds to
the computation of importance weights (step (ii)) using optimal
backward kernels (see Sisson, Fan, and Tanaka 2007), and lines
(12)-(13) perform the resampling (step (iii)). The number of
particles, M, and the number of intermediate distributions, R,
influence the accuracy and performance, respectively, of the
sampler. Setting M too small can lead to large estimator vari-
ability and particle degeneracy, and setting R too small leads to
large divergence between successive distributions that can result
in high rejection rates. Note that throughout all algorithms used

Algorithm 1 SMC-ABC
1: Initialize 06 ~ p(#) and wf) =1/ M, fori=1,...,M;
2: forr=1,...,Rdo
3: fori=1,...,Mdo
4: repeat
5

Draw 0* from {0];71}]»/;/‘1 according to the prob-
ability mass function

r—1

PO*=¢_)=—""—, forj=1,...,M;
! Zk/\;l1 W]r(—l
6 Sample transition kernel, 8** ~ g,(6|0%);
7: Generate data, Ds ~ s(D|0**);
8: until p (D, D) < ¢,
9 Set 0. « 6™
10: Set wy < p(6})/ [Z]A:/ll Wi'flq?’(alrlojrfl)];
11: end for
12: Resample weighted particles, {(6, wi)}{\z/ll, with
replacement;
13: Setw! < 1/Mforalli=1,..., M;
14: end for

in this manuscript, we assume that the initial set of weighted
particles, {06,w6}{\:’11, are independent, identically distributed
samples from the prior, p(#), and therefore have uniform weight,
w6 = 1/M, foralli = 1,..., M. However, the methods
are general enough to deal with prior distributions that require
importance sampling to draw truly weighted particles.

For a fixed choice of R, efficient use of SMC-ABC depends
critically on the selection of appropriate proposal kernels
and threshold sequences. Following Filippi et al. (2013), we
explore the choice of proposal kernel by considering the density
& (0+|D) that represents the process of sampling at the target
threshold, ¢,, given the weights of the previous threshold, €,_1,
extended as a function w,_;(0,—;) for any 6,_; € ©. This
density is given by

1
/ / ]lB(D,er) (Ds) s(Ds6;)
arr—1 JO JD
X qr(0:10,—1)wr_1(0,-1) dD,df,_1, (2)

& (0,/D) =

where the data space, D, has dimensionality d, B(D,¢,) is a
d-dimensional ball centred on the data with radius €,, 14 (x)
denotes the indicator function with 14 (x) = 1if x € A,
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otherwise 14 (x) = 0. The normalization constant, a,,_;, can
be interpreted as the average acceptance probability across all
particles. We see this by noting that Equation (2) can be reduced
to

nr—1(0,)P(Ds € B(D, €,)10,)

arr—1

£ (0:D) =

©)

Here, the distribution 1,_1(8,) represents the equivalent of the
proposal mechanism in Equation (1)

nr—100) :/(:)Qr(arwr—l)wr—l(Or—l)dar—la (4)

and P(D; € B(D, €,)|0,) is the probability that simulated data
is within €, of the data D given a parameter value 6,. Therefore,
the normalizing constant is

arr—1 = E[P(Ds € B(D, €,)16,)], €)

that is, a, ,— is the average acceptance probability.

It is important to note that, Equation (2) is not, in general,
equal to the ABC posterior for arbitrary proposal kernels.
From a computational perspective, the goal is to choose
Nr—1(0,) to maximize a,,_;. However, this would not nec-
essarily result in a &, (0,|D) that is an accurate approxima-
tion to the true target ABC posterior p(0.|0(D,Ds) < €).
To achieve this goal, we require 7,_1(0,) such that the
Kullback-Leibler divergence (Kullback and Leibler 1951),
Dxr (“;‘, ¢1D);p(-lp(D,Ds) < e,)), is minimized. Beaumont
etal. (2009) and Filippi et al. (2013) demonstrated how the latter
goal provides insight into how to optimally choose n,—1(6;).
The key is to note that Dxy, (& (-|D);p(:|o(D, Ds) < €)) can
be decomposed as follows,

Dk (& CID); p(-1p(D, Dy) < €))
= DxL (nr—l ()spClp(D,Ds) < Er)) — E0,) +1og, arr—1,
(6)

where E(0,) = E [log, (/p 1D, (Ds) s(Ds|0,) dDs)] is inde-
pendent of n,_;(0,). By rearranging Equation (6), we obtain

Dxr, (nr-1 ()3 p(1p(D, Dy) < €))
= Dx1 (Er CID);p(lp(D,Ds) < Gr)) + E(0,) — log, arr—1.

That is, minimizing Dgr (n,_l ();pClp(D,Ds) < er)) is
equivalent to minimizing Dgp, (ér CID);pClp(D,Ds) < er))
and maximizing a,,—1 simultaneously. Therefore, any proposal
mechanism that is closer, in the Kullback-Leibler sense, to
pClp(D, Ds) < &) is more eflicient.

For some families of proposal kernels Equation (6) can be
minimized analytically. We apply the optimal adaptive scheme
of Beaumont et al. (2009) and Filippi et al. (2013) for multivari-
ate Gaussian proposals. That is, we set

1
O = Jraae
x exp (— (@, —0,-)"S710, — 6,_1)/2),
where 7 is the dimensionality of parameter space, ©, and
M
O — ) O — )" with
i=1

2

= o
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2.2. Preconditioning SMC-ABC

Consider a fixed sequence of ABC posteriors for the stochastic
model inference problem, {p(@|p (D, D;) < 6,)}52 1- We want to
apply SMC-ABC (Algorithm 1) to efficiently sample from this
sequence with adaptive proposal kernels, {g,(0%0)}*_, (Beau-
mont et al. 2009; Filippi et al. 2013). Our method exploits an
approximate model to further improve the average acceptance
probability.

2.2.1. Algorithm Development

Say we have a set of weighted particles that represent the ABC
posterior at threshold €,_; using the stochastic model, that is,
{(OT LWi_ 1)} ~ p@,-1lp(D,Ds) < €,—1). Now, consider
applying the next importance resamphng step using an approx-
imate data-generation step, Ds; ~ 3(D;s|@), where 5(D;|0) is
the simulation process of an approx1mate model'. Furthermore,
assume the computational cost of simulating the approximate
model, Cost(D), is significantly less than the computational
cost of the exact model, Cost(D;), that is, Cost(D;) /Cost(D;) K
1. The result will be a new set of particles that represent the
ABC posterior at threshold €, using this approximate model,
denoted {(5;, fvi)}i/\:/ll ~ ﬁ(5r|p(D, Ds) < €). As noted in the
examples in Section 1, approximate models are not always valid.
This implies that [)(érl p(Dﬁs) < €,) is always biased and will
not in general converge to p(0|D) as €, — 0. However, since
Cost(ﬁs) /Cost(Ds) < 1, it is computationally inexpensive to
compute the distribution

M o
(0, =Y 40,10}, (7)
j=1
in comparison to computing 1,1 (0() (Equation (1)). In Equa-
tion (7), thg proposal kernel Z],(0r|éjr) is possibly distinct from
the qr(0r|0Jr_1) used in n,—1(6,) (Equation (1)). To improve the
efficiency of the sampling process we require

DKL(nrfl(’)Qp(‘LO(DIDs) <€)
> Dk1(7ir(-); p(-lo(D, Ds) < €)), (8)

for 77,(8,) (Equation (7)) to be more efficient as a proposal mech-
anism compared with 7,_1(6,) (Equation (1)). Provided the
condition Cost(D;) /Cost(D;s) <« 1 holds, any improvements
in sampling efficiency will translate directly into computational
performance improvements. That is, it does not matter that
f)(ér |p(D, Ds) < &) is biased, it just needs to be less biased than
pO,_1|p(D,Ds) < €,—1) and computationally inexpensive.
This idea yields an intuitive new algorithm for SMC-ABC
that proceeds through the sequential sampling of {p(8|o (D, D)
< €)}R_| by applying two resampling steps for each iteration.
The first moves the particles from acceptance threshold
€r—1 t0 €, using the computationally inexpensive approxi-
mate model, and the second corrects for the bias between
p@.p(D, Ds) < €,) and p0,|p(D,D;s) < €,) using the expen-
sive stochastic model, but at an improved acceptance rate. Since

"Throughout, the overbar tilde notation, for example, X, is used to refer to the
ABC entities related to the approximate model, whereas quantities without
the overbar tilde notation, for example, x, are used to refer fo the ABC
entities related to the exact model.

the intermediate distribution acts on the proposal mechanism
to accelerate the convergence time of SMC-ABC, we denote
the sequence {p(0 |p(D, Dy) < er)} —, as the preconditioner
distribution sequence. The algorithm, called preconditioned
SMC-ABC (PC-SMC-ABC), is given in Algorithm 2. We note
that similar notions of preconditioning with approximation
informed proposals have been applied in the context of Markov
chain Monte Carlo samplers (Parno and Marzouk 2018).
However, to the best of our knowledge, our approach represents
the first application of preconditioning ideas to SMC-ABC.
One particular advantage of the PC-SMC-ABC method is

Algorithm 2 Preconditioned SMC-ABC
1: Initialize 06 ~ p(6) and wf) =1/M,fori=1,...,

M;

2. forr=1,...,Rdo

3: fori=1,...,Mdo

4 repeat .

5 Draw 0* from {0]r_1 j/\:/ll according to the prob-

ability mass function

: W)
]P’(0*=0jr_1)= Mrflk , forj=1,...,.M;
k=1 Wr—1
6: Sample transition kernel, 0" ~ qr(é |0™);
7: Generate data, D, ~ §(D|é**);
8: until‘p(D, D) < e,
9: Set é; — 6"
10 Set i < p@)/ [ L4 wl_10:@,16)_) s
11: end for
12: fori=1,..., M do
13: repeat '
14: Draw 6" from {é],_l}j/:ll according to the prob-
ability mass function
- W,
IP’(G* 0] )= M ~k , forj=1,...,M;
k=1 Wr—1
15: Sample transition kernel, 0** ~ g,(0 |é*);
16: Generate data, D; ~ s(D|0**);
17: until'p(D, D) < ¢,
18: Set ) « 6™ ‘
19: Setwl < p(@’)/ [ijfl ﬁ/’,Z],(()ﬂé],)];
20: end for
21: Resample weighted particles, {(6},w )} 7, with
replacement;
22: Setw! < 1/Mforalli=1,..., M;
23: end for

that it is asymptotically unbiased (supplementary material).
Effectively, one can consider PC-SMC-ABC as standard SMC-
ABC method with a specialized proposal mechanism based
on the preconditioner distribution. This means that PC-SMC-
ABC is completely general, as discussed in Section 4, and is
independent of the specific stochastic models that we consider
here. This property of unbiasedness holds even for cases where
the approximate model is a poor approximation of the forward
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dynamics of the model. However, the closer that 7,(8,) is to
p0,|p(D,Ds) <€) the better the performance improvement
will be, as we demonstrate in Section 3.

2.3. Moment-Matching SMC-ABC

The PC-SMC-ABC method is a promising modification to
SMC-ABC that can accelerate inference for expensive stochastic
models without introducing bias. However, other approaches
can be used to obtain further computational improvements.
Here, we consider an alternate approach to using approximate
models that aims to get the most out of a small sample of
expensive stochastic simulations. Unlike PC-SMC-ABC, this
method is generally biased, but it has the advantage of yielding
a small and fixed computational budget. Specifically, we define a
parameter « € [0, 1], such that 1/« is the target computational
speedup, for example, @ = 1/10 should result in approximately
10 times speedup. We apply the SMC-ABC method using
M=11-a)M| particles based on the approximate model,
and then use M = [aM] particles based on the stochastic
model to construct a hybrid population of M = M + M
particles that will represent the final inference on the stochastic
model. The key idea is that we use the M particles of the
expensive stochastic model to inform a transformation on the
M particles of the approximation such that they the emulate
particles of expensive stochastic model. Here, |-| and [-] are,
respectively, the floor and ceiling functions.

2.3.1. Algorithm Development

Assume that we have applied SMC-ABC to sequentially sample
M particles through the ABC posteriors from the approximate
model, {f)(é,lp(D, Dy) < e,)}le, with €g = €. For the sake of
the derivation, say that for all » € [1, R] we have available the
mean vector, i,, and the covariance matrix, X, of the ABC
posterior p(8,|p(D, Ds) < €,) under the stochastic model. In

~ p@,1p(D,Dy) < &) to

emulate particles 0}, .. .,Oﬁw ~ p(@,|p(D,D;s) <€) by using
the moment matching transform (Lei and Bickel 2011; Sun,
Feng, and Saenko 2016)

. 1 M
this case, we use particlesé,,...,0,

i =L, [i;l (é; —;1,)] tH, i=12..,M, (9

where ft, and X, are the empirical mean vector and convariance

matrix of particles éi, ces ()i\/[, L, and L, are lower triangular
matrices obtained through the Cholesky factorization (Press
et al. 1997) of X, and X, respectively, and L' is the matrix
inverse of L,. This transform will produce a collection of parti-
cles that has a sample mean vector of u, and covariance matrix
¥ .. That is, the transformed sample matches the ABC posterior
under the stochastic model up to the first two moments. In Sec-
tion 3, we demonstrate that matching two moments is sufficient
for the problems we investigate here, however, in principle we
could extend this matching to higher order moments if required.
For discussion on the advantages and disadvantages of matching
higher moments, see Section 4.

In practice, it would be rare that p, and X, are known.
If p(0,—1|p(D,Ds) <e€,—1) is available, then we can use
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importance resampling to obtain M particles, oL,..., (ﬂ\%,
from p(0,|p (D, D;) < €,), that is, we perform a step from SMC-
ABC using the expensive stochastic model. We can then use the

unbiased estimators

M o .
" > O — )6 i)

i=1

ﬂr:M'

M
1 : ~ 1
- Z 0, and X, =—
i=1 M -
(10)
to obtain estimates of u, and X,. Substituting Equation (10) into

Equation (9) gives an approximate transform
0. =1, [i;l (é’, - ﬂ,)] i, i=12..,M, (11)

where )A:, = IAJrIA:,F. This enables us to construct an estimate
of p(0,|p(D,D;s) <€) by applying the moment-matching

transform (Equation (11)) to the particles éi,,éM then

;
A1 ~M
pooling the transformed particles@,,...,0, with the particles

0!,...,0M that were used in the estimates ft, and X,. The
goal of the approximate transform application is for the

transforms particles éi, ceo éiw to be more accurate in higher
moments due, despite only matching the first two moments
(see Section 3.6 for numerical justification of this property for
some specific examples). This results in an approximation of
p0,|p(D, D) < €,) using a set of M particles Oi, ey 0?4 with
0£+M = 9; wherel1 <i < M.

This leads to our moment-matching SMC-ABC (MM-SMC-
ABC) method. First, SMC-ABC inference is applied using the
approximate model with M particles. Then, given M samples
from the prior, p(@), we can sequentially approximate
{p0,1p(D,Ds) < 6,)}§=1. At each iteration the following steps
are performed: (i) generate a small number of particles from
p0:1p(D,Ds) < €) using importance resampling and stochas-
tic model simulations; (ii) compute ft, and 3, = I:,I:;f; (iii)
apply the transform from Equation (11) to the particles at €,
from the approximate model; (iv) pool the resulting particles
with the stochastic model samples; and (v) reweight particles
and resample. The final MM-SMC-ABC algorithm is provided
in Algorithm 3.

The performance of this method depends on the choice of .
Note that in Algorithm 3, standard SMC-ABC for the expensive
stochastic model is recovered as « — 1 (no speedup, infer-
ence unbiased), and standard SMC-ABC using the approximate
model is recovered as ¢ — 0 (maximum speedup, but inference
biased). Therefore, we expect there is a choice of ¢ € (0, 1) that
provides an optimal tradeoff between computational improve-
ment and accuracy. Clearly, the expected speed improvement is
proportional to 1/, however, if « is chosen to be too small, then
the statistical error in the estimates in Equation (10) will be too
high. We explore this tradeoft in detail in Section 3.6 and find
that 0.05 < o < 0.2 seems to give a reasonable result.

3. Results

In this section, we provide numerical examples to demonstrate
the accuracy and performance of the PC-SMC-ABC and MM-
SMC-ABC methods. First we apply PC-SMC-ABC to a tractable
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Algorithm 3 Moment-matching SMC-ABC
[0, 1], initialize M =

1: Given o € [aM] and M =
L1 —a)M];

2: Initialize é; ~ p(6) and 171/6 = l/J\;l, fori=1,..., M;

3: Initialize 0i ~ p(#) and w6 =1/M,fori=1,...,M;

Apply SMC-ABC to  generate the sequence of approx1mate

{(aR’ Wk)}gl

i

particles {(01,17vi)}l 1 {(02,*%)}1 15 -

5: forr=1,...,Rdo_

6: fori:l,...,./\/ldo

7: repeat .

8: Draw 0* from {01_1}1/;’11 according to the prob-

ability mass function

* J Wl—l .
PO* =6, )= ——— forj=1,...,M;
Zk 1 W

9: Sample transition kernel, 8** ~ ¢,(0|60%);

10: Generate data, D; ~ s(D|0**);

11: until p (D, D) < €,

12: Set 0. <« 6**;

13 Set wi. < p(81)/ [ZJ WO mide 1)];

14: end for

15: Estimate means and covariances fi ., Zr, it and % ,;

16: Compute Cholesky decompositions £, = L,LT and
%, =L1T

17: fori:l,..;,./\;ldo ' A

18: Set M — L [L-1(6. — fi,)] + fi, and witM —
fvi;

19: end for

20: Resample weighted particles {(0 w )}M1 with replace-
ment;

21: Setwi < 1/Mforalli=1,...,M;

22: end for

example to demonstrate the mechanisms of the method and
provide insight into effective choices of approximate model. The
tractable example considered here is inference for an Ornstein-
Uhlenbeck process (Uhlenbeck and Ornstein 1930). We then
consider two intractable problems based on expensive discrete
models. For our first example, we consider the analysis of spa-
tially averaged population growth data. The discrete model
used in this instance is relevant in the ecological sciences as it
describes population growth subject to a weak Allee effect (Tay-
lor and Hastings 2005). We then analyze data that is typical of
in vitro cell culture scratch assays in experimental cell biology
using a discrete model that leads to the well-studied Fisher-KPP
model (Murray 2002; Edelstein-Keshet 2005). In both examples,
we present the discrete model and its continuum limit, then
compute the full Bayesian posterior for the model parameters
using the PC-SMC-ABC (Algorithm 2) and MM-SMC-ABC
(Algorithm 3) methods, and compare the results with the SMC-
ABC (Algorithm 1) using either the discrete model or contin-
uum limit alone. We also provide numerical experiments to
evaluate the effect of the tuning parameter @ on the accuracy
and performance of the MM-SMC-ABC method.

It is important to clarify that when we refer to the accuracy of
our methods, we refer to their ability to sample from the target
ABC posterior under the expensive stochastic model. The eval-
uation of this accuracy requires sampling from the target ABC
posterior under the expensive stochastic model using SMC-
ABC. As a result, the target acceptance thresholds are chosen
to ensure this is computationally feasible.

3.1. ATractable Example: Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck process is a mean reverting stochastic
process with many applications in finance, biology and
physics (Uhlenbeck and Ornstein 1930). The evolution of the
continuous state X; is given by an Ito stochastic differential
equation (SDE) of the form

dX; = y(u — Xp)dt + odWy,
Xo = x9, ift=0,

ift >0, (12)

where w is the long-term mean, y is the rate of mean reversion,
o is the process volatility, W; is a Wiener process and xp is a
constant initial condition. Example realizations are shown in
Figure 2(A).

We consider data consisting of N independent realizations
of the Ornstein-Uhlenbeck processs at time T' < o0, that is,
D = [X},X2,...,XY]. This inference problem is analytically
tractable since the Fokker-Planck equation can be solved to
obtain a Gaussian distribution for the data

2
~N<u+(xo+u)e Vil — — —ny) (13)
2y

For demonstration purposes, we will assume a solution for the
full Fokker-Planck equation is unavailable and perform ABC
inference to estimate the volatility parameter, o, using stochastic
simulation with the Euler-Maruyama discretisation (Maruyama
1955)

Xepar =Xt +y(u — Xp) At + oV Aty (14)

where &; is a standard normal variate and At is a small time step.
For the approximate model, we take the stationary distribution
of the Ornstein-Uhlenbeck process obtained by taking T — oo
and solving the steady state of the Fokker-Planck equation,

B ()

This kind of approximation will often be possible since the
steady state Fokker-Planck equation is more likely to be
tractable than the transient solution for most SDE models.
As shown in Figure 2(B), the stationary solution is a better
approximation for the true variance than for the true mean.
Therefore, for small T this approximation would be more
appropriate as a preconditioner for inference of the volatility
parameter, o, in Equation (12) than for the long-time mean, .
In general, the performance expected from preconditioning will
increase as T increases since the stationary approximation will
become more accurate.

Figure 3 demonstrates the results of applying PC-ABC-SMC
(Algorithm 2) with M = 1000 particles, showing intermediate
distributions, for inferring D = 02 /2 given dataat T = 1, using

(15)
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Figure 2. (A) Four example realizations of the Ornstein—Uhlenbeck process with parameters .« = 1, = 2,0 = 2+/5 and initial condition xo = 10. (B) Empirical
distribution of X7 for T = 1 compared with the exact Fokker—Planck solution and the stationary solution as T — oo. Simulations are performed using the Euler-Maruyama

discretization with time step At = 0.001.

Figure 3. PC-SMC-ABC intermediate steps for the Ornstein—-Uhlenbeck SDE example. Each panel demonstrates the transition from threshold €, (dotted line) to ¢ (solid
line) via the preconditioner (dashed line). (A) g to €1; (B) €1 to €3; (C) €; to €3; and (D) €3 to €4. The threshold sequenceis e, = €,_1/2forr = 1,2,3,4 witheg = 6.4.

stochastic simulation for the exact model (Equation (14)) with
At = 0.01, and the stationary distribution (Equation (15)) for
the approximate model used in the preconditioning step.

In this example, all other parameters are treated as known
withxg = 10, u = 1 and y = 2. Data is generated using D = 10
as in Figure 2. In each step, the preconditioner distribution for
threshold ¢, (dashed line) is a better proposal distribution for
the target (solid line) than that of the exact model at threshold
€r—1 (dotted line). The overall speedup factor is approximately
1.5 for this example, and it continues to improve as T increases
since Equation (15) becomes an increasingly better approxima-
tion to Equation (13). For truly intractable problems, such as
the lattice-based random walk models presented in Sections 3.4
and 3.5, we obtain superior performance gains of up to a factor
of four.

3.2. Lattice-Based Stochastic Discrete Random Walk
Model

The stochastic discrete model we consider is a lattice-based
random walk model that is often used to describe populations of

motile cells (Jin et al. 2016). The model involves initially placing
a population of N agents of size § on a lattice, L (Callaghan
et al. 2006; Simpson, Landman, and Hughes 2010), for exam-
ple an I x ] hexagonal lattice (Jin et al. 2016). This hexago-
nal lattice is defined by a set of indices L = {(i,j) : i €
[0,1,...,I — 11, € [0,1,...,] — 1]}, and a neighborhood
function,

{(i—1Lj—1,3Gj— D, +1Lj— 1),
G+ 1), (6j+ 1,0 =11}

{(i—Lj,Gj— 1,3+ 1)),
(+1,j+1),3Gj+1),3G—1,j+ 1)}

if i is even,

NG,j) =
if i is odd.

Lattice indices are mapped to Cartesian coordinates using

(i?é, j8)

3 1
(i%& (] + 5) 5) if i is odd.

if i is even,

(x> yj) = (16)
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Figure 4. Example of movement and proliferation events in a lattice-based random walk model, using a hexagonal lattice with lattice spacing, 3. (A) An example hexagonal
lattice neighborhood A/ (€). An agent at site £ attempts a motility event (A)-(C) with probability Pr,. (B) Motility events are aborted when the randomly selected neighbor
site is occupied. (C) The agent moves to the selected site, if unoccupied. An agent at site £ attempts a proliferation event (A),(D)-(E) with probability Pp. (D) Proliferation

events are successful with probability f(Ce, 1), resulting in an unoccupied site being selected. (E) The daughter agent is placed at the selected site and the number of

agents in the populations is increased by one.

We define an occupancy function such that C(¢,t) = 1 if site
£ is occupied by an agent at time ¢t > 0, otherwise C(¢,t) = 0.
This means that in our discrete model each lattice site can be
occupied by, at most, one agent.

During each discrete time step of duration 7, agents attempt
to move with probability P, € [0, 1] and attempt to proliferate
with probability P, € [0, 1]. If an agent at site £ attempts a
motility event, then a neighboring site will be selected uniformly
at random. The motility event is aborted if the selected site is
occupied, otherwise the agent will move to the selected site (Fig-
ure 4(A)-(C)). For proliferation events, the local neighborhood
average occupancy,

C(Z,t):é >,

0'eN(0)

is calculated and a uniform random number u ~ U(0,1) is
drawn. If u > f(C(Z, ), wheref(é’(ﬂ, 1)) € [0,1] is called the
crowding function (Jin et al. 2016; Browning, McCue, and Simp-
son 2017), then the proliferation event is aborted due to local
crowding effects and contact inhibition. If u < f (C(¢,1)), then
proliferation is successful and a daughter agent is placed at a ran-
domly chosen unoccupied lattice site in A/ (£) (Figure 4(A),(D)-
(E)). The evolution of the model is generated through repeating
this process though M time steps, t; = 7, t = 27,..., ty =
Mr. This approach, based on the work by Jin et al. (2016),
supports a generic proliferation mechanism since f(C(¢, t)) is
an arbitrary smooth function satisfying f(0) = 1 and f(K) = 0,
where K > 0 is the carrying capacity density. However, in the
literature there are also examples that include other mechanisms
such as cell-cell adhesion (Johnston, Simpson, and Plank 2013),
directed motility (Binny et al. 2016), and Allee effects (Bottger
et al. 2015).

3.3. Approximate Continuum-Limit Descriptions

Discrete models do not generally lend themselves to analytical
methods, consequently, their application is intrinsically tied
to computationally intensive stochastic simulations and Monte
Carlo methods (Jin etal. 2016). As a result, it is common practice
to approximate mean behavior using differential equations by
invoking mean-field assumptions, that is, to treat the occupancy
status of lattice sites as independent (Callaghan et al. 2006;
Simpson, Landman, and Hughes 2010). The resulting approx-
imate continuum-limit descriptions (supplementary material)
are partial differential equations (PDEs) of the form

IC(x,p, 1)
ot

where C(x,y,t) = E[C({,1)], D = lims—o0,r—0 Pm82/(4t) is
the diffusivity, A = lim; o P,/7 is the proliferation rate with
P, = O(1), and f(-) is the crowding function that is related
to the proliferation mechanism implemented in the discrete
model (Jin et al. 2016; Browning, McCue, and Simpson 2017).
For spatially uniform populations there will be no macroscopic
spatial gradients on average, that is VC(x,y,t) = 0. Thus,
C(x, y,t) isjust a function of time, C(t), and the continuum limit
reduces to an ordinary differential equation (ODE) describing
the net population growth,

O _sewreo.

t

For many standard discrete models, the crowding function is
implicitly f(C) = 1 — C (Callaghan et al. 2006). That is, the
continuum limits in Equation (17) and Equation (18) yield the
Fisher-KPP model (Edelstein-Keshet 2005; Murray 2002) and
the logistic growth model (Tsoularis and Wallace 2002; Warne,

= DV2C(x, 5,t) + AC(x, 1, f C(x, 1, 1)),  (17)

(18)


https://doi.org/10618600.2021.2000419

Baker, and Simpson 2017), respectively. However, nonlogistic
growth models , for example, f(C) = (1 — C)" for n > 1, have
also been considered (Tsoularis and Wallace 2002; Simpson,
Landman, and Hughes 2010; Jin et al. 2016).

3.4. Temporal Example: A Weak Allee Model

The Allee effect refers to the reduction in growth rate of a
population at low densities. This is particularly well studied in
ecology where there are many mechanisms that give rise to this
phenomenon (Taylor and Hastings 2005; Johnston et al. 2017).
We introduce an Allee effect into our discrete model by choosing
a crowding function of the form

. o, _Cwn)[(A+Cw
f(C, ) = <1 X ) ( X )

where C(¢, 1) € [0,1] is the local density at the lattice site £ €
L, at time t, K > 0 is the carrying capacity density, and A is
the Allee parameter which yields a weak Allee effect for A >
0 (Wang, Shi, and Wang 2019). Note that smaller values of A
entail a more pronounced Allee effect with A < 0 leading to a
strong Allee effect that can lead to species extinction (Wang, Shi,
and Wang 2019). For simplicity, we only consider the weak Allee
effect here, but our methods are general enough to consider any
sufficiently smooth f(-).

Studies in ecology often involve population counts of a par-
ticular species over time (Taylor and Hastings 2005). In the
discrete model, the initial occupancy of each lattice site is inde-
pendent, and hence there are no macroscopic spatial gradients
on average. It is reasonable to summarize simulations of the
discrete model at time ¢ by the average occupancy over the entire
lattice, C(t) = (1/I]) > ver C(&, ). Therefore, the continuum
limit for this case is given by (Wang, Shi, and Wang 2019)

dC(t) () <1 B @) <A +C(t)>’
dt K K

with C(t) = E[C(1)], A = lim;_.¢ Pp/7, and C(0) = E [C(0)].

We generate synthetic time-series ecological data using the
discrete model, with observations made at times t; = T X
10%,t, = 2t x 10%,...,t19 = T x 10% resulting in data D =
[_Cobs(tl)’ Cobs(£2), - - - Cobs(t10)] with Cops(t) = C(t) where
C(t) is the average occupancy at time ¢ for a single realization of
the discrete model (supplementary material). For this example,
we consider an I x ] hexagonal lattice with I = 80, ] =

(19)
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68, and parameters P, = 1/1000, P, = 0,8 = 7 = 1,
K = 5/6,and A = 1/10. Reflecting boundary conditions
are applied at all boundaries and a uniform initial condition
is applied, specifically, each site is occupied with probability
P(C(,0) =1) = 1/4forall £ € L, giving C(0) = 1/4. This
combination of parameters is selected since it is known that
the continuum limit (Equation (19)) will not accurately predict
the population growth dynamics of the discrete model in this
regime since Pp/Pp, > 1 (supplementary material).

For the inference problem we assume Py, is known, and we
seek to compute p(#|D) under the discrete model with § =
[A,A,K] and A = P,/t. We use uninformative priors, P, ~
U(0,0.005), K ~ U4(0,1) and A ~ 1/(0,1) with the additional
constraint that A < K, that is, A and K are not independent in
the prior. The discrepancy metric used is the Euclidean distance.
For the discrete model, this is

10

1/2
p(D,Ds) = |:Z (Cobs(tk) - C(tk))2:| >

k=1

where C(t;) is the average occupancy at time f of a realization
of the discrete model given 6. Similarly, for the continuum limit
we have

1/2

10
p(D, D)) = | Y (Cobs(tr) —Ct))* |
j=1

where C(#;) is the solution to the continuum limit (Equation
(19)), computed numerically (Fehlberg 1969; Iserles 2008)
(supplementary material). We compute the posterior using our
PC-SMC-ABC and MM-SMC-ABC methods to compare with
SMC-ABC under the continuum limit and SMC-ABC under the
discrete model. In each instance, M = 1000 particles are used
to approach the target threshold € = 0.125 using the sequence
€1,€2,...,€5 with €, = €,_1/2. In the case of MM-SMC-ABC
the tuning parameter is o = 0.1. The Gaussian proposal kernels,
q-(0+10,—1) and ér(ﬂrlé,), are selected adaptively (Beaumont
et al. 2009; Filippi et al. 2013).

Figure 5 and Table 1 present the results. SMC-ABC using the
continuum-limit model is a poor approximation for SMC-ABC
using the discrete model, especially for the proliferation rate
parameter, A (Figure 5(a)), which is expected because P,, = 0.
However, the posteriors estimated using PC-SMC-ABC are an
excellent match to the target posteriors estimated using SMC-
ABC with the expensive discrete model, yet the PC-SMC-ABC

Figure 5. Comparison of estimated posterior marginal densities for the weak Allee model. There is a distinct bias in the SMC-ABC density estimate using the continuum
limit (CL) (black dashed) compared with SMC-ABC with the discrete model (DM) (green dashed). However, the density estimates computed using the PC-SMC-ABC (orange
solid) and MM-SMC-ABC (purple solid) methods match well with a significantly reduced computational overhead.
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Table 1. Computational performance comparison of the SMC-ABC, PC-SMC-ABC,
and MM-SMC-ABC methods for the weak Allee model inference problem.

Stochastic Continuum Run
Method samples samples time (hours) Speedup
SMC-ABC 28,588 0 471 1x
PC-SMC-ABC 13,799 58,752 21.1 2x
MM-SMC-ABC 3,342 36,908 5.6 8x

NOTE: Computations are performed using an Intel” Xeon™ E5-2680v3 CPU (2.5 GHz).

method requires only half the number of stochastic simulations
(Table 1). The MM-SMC-ABC method is not quite as accurate
as the PC-SMC-ABC method, however, the number of expen-
sive stochastic simulations is reduced by more than a factor of
eight (Table 1) leading to considerable increase in computational
efficiency.

3.5. Spatiotemporal Example: A Scratch Assay

We now look to a discrete model commonly used in studies of
cell motility and proliferation, and use spatially extended data
that is typical of in vitro cell culture experiments, specifically
scratch assays (Liang, Park, and Guan 2007).

In this case we use a crowding function of the form
f(CW, 1) = 1 — C(t,t)/K, where K > 0 is the carrying
capacity density, since it will lead to a logistic growth source
term in Equation (17) which characterizes the growth dynamics
of many cell types (Simpson, Landman, and Hughes 2010;
Jin et al. 2017). The discrete model is initialized such that
initial density is independent of y. Therefore, we summarize
the discrete simulation by computing the average occupancy
for each x coordinate, that is, we average over the y-axis
in the hexagonal lattice (Jin et al. 2016), that is, Clx,t) =
a/n Z(x)y)eL C((x,y),1t). Thus, one arrives at the Fisher-KPP
model (Murray 2002; Edelstein-Keshet 2005) for the continuum
limit,

2
ICC ) _ D8 Cx1) + AC(x, 1) (1 — C(; t)>’ (20)

ot 9x2

where C(x,t) = E [(_?(x, t)], D = lims_0¢—0 Pné?/(47), and
A= limrﬁo Pp/‘L’.

Just as with the weak Allee model, here we generate syn-
thetic spatiotemporal cell culture data using the discrete model.
Observations are made at times f; = 37 x 10%, , = 67 X
10%,...,t0 = 37 x 103, resulting in data

Cobs (x1, 1)
Cobs (x2, 1)

Cobs (x15 t10)
Cobs (%25 t10)

Cobs (x1,12)
Cobs (%2, 12)

Cobs(x1t1)  Cobs(x1, £2) Cobs (X1 t10)

with Cops(x, £) = C(x, t) where C(x, t) is the average occupancy
over sites (x, 1), (%, ¥2), ..., (x,y7) at time ¢ for a single real-
ization of the discrete model. As with the weak Allee model,
we consider an I x ] hexagonal lattice with I = 80, ] = 68,
and parameters P, = 1/1000, P, = 1,8 = 7 = 1 and
K = 5/6. We simulate a scratch assay by specifying the center
20 cell columns (31 < i < 50) to be initially unoccupied, and
apply a uniform initial condition outside the scratch area such

that E [C(¢,0)] = 1/4 overall. Reflecting boundary conditions
are applied at all boundaries. Note, we have selected a parameter
regime with P,/P;;, < 1 for which the continuum limit is an
accurate representation of the discrete model average behavior
(supplementary material).

Since we have spatial information for this problem, we
assume P, is also an unknown parameter and perform
inference on the discrete model to compute p(@|D) with
0 = [AD,Kl, A = Py/t,and D = P,8*/4t. We utilize
uninformative priors, P, ~ 4£(0,0.008), Py, ~ U(0,1), and
K ~ U(0,1). For the discrepancy metric we use the Frobenius
norm; for the discrete model, this is

10 I

p(D,Dy) = [Z

1/2
= 2
(Cobs (xis tr) — Clxis 1)) i| ,
k=1 i=1

where C(x;, tx) is the average occupancy at site x; at time . of a
realization of the discrete model given parameters 6. Similarly,
for the continuum limit we have

10 I

1/2
p(D,Dy) = [Z > (Cobs (x> tr) — C (i tk))2:| ,

k=1 i=1

where C(x;, ;) is the solution to the continuum-limit PDE
(Equation (20)), computed using a backward-time, centered-
space finite difference scheme with fixed-point iteration and
adaptive time steps (Sloan and Abbo 1999; Simpson, Landman,
and Bhaganagarapu 2007) (supplementary material). We
estimate the posterior using our PC-SMC-ABC and MM-SMC-
ABC methods to compare with SMC-ABC using the continuum
limit and SMC-ABC using the discrete model. In each case,
M = 1000 particles are used to approach the target threshold,
€ = 2, using the sequence €1, €3,...,€5 with €, = €,_1/2. In
the case of MM-SMC-ABC the tuning parameter is « = 0.1.
Again, Gaussian proposal kernels, g,(6,|6,—;) and f],(0r|ér),
are selected adaptively (Beaumont et al. 2009; Filippi et al.
2013).

Results are shown in Figure 6 and Table 2. Despite the con-
tinuum limit being a good approximation of the discrete model
average behavior, using solely this continuum limit in the infer-
ence problem still leads to bias. Just as with the weak Allee
model, both PC-SMC-ABC and MM-SMC-ABC methods pro-
duce a more accurate estimate of the SMC-ABC posterior den-
sity with the discrete model. Overall, PC-SMC-ABC s unbiased,
however, MM-SMC-ABC is still very accurate. The main point
for our work is that the PC-SMC-ABC and MM-SMC-ABC
methods both produce posteriors that are accurate compared
with the expensive stochastic inference problem, whereas the
approximate model alone does not. From Table 2, both PC-
SMC-ABC and MM-SMC-ABC require a reduced number of
stochastic simulations of the discrete model compared with
direct SMC-ABC. For PC-SMC-ABC, the reduction is almost a
factor of four and, for MM-SMC-ABC, the reduction is almost
a factor of eleven.

3.6. A Guide to Selection of o for MM-SMC-ABC

The performance of MM-SMC-ABC is dependent on the tuning
parameter « € [0, 1]. Since MM-SMC-ABC will only propagate
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Figure 6. Comparison of estimated posterior marginal densities for the scratch assay model. There is a distinct bias in the SMC-ABC density estimate using the continuum
limit (CL) (black dashed) compared with SMC-ABC with the discrete model (DM) (green dashed). However, the density estimates computed using the PC-SMC-ABC (orange
solid) and MM-SMC-ABC (purple solid) methods match well with a reduced computational overhead.

Table 2. Computational performance comparison of the SMC-ABC, PC-SMC-ABC,
and MM-SMC-ABC methods, using the scratch assay model inference problem.

Stochastic Continuum Run
Method samples samples time (hours) Speedup
SMC-ABC 46,435 0 20.6 1x
PC-SMC-ABC 13,949 13,179 5.6 4x
MM-SMC-ABC 4,457 10,594 1.9 11x

NOTE: Computations are performed using an Intel” Xeon™ E5-2680v3 CPU (2.5 GHz).

[ M particles based on the expensive stochastic model, o can
be considered as a target computational cost reduction factor
with 1/« being the target speed up factor. However, intuitively
there will be a limit as to how small one can choose « before the
statistical error incurred from the estimates of ., and X, is large
enough to render the approximate moment matching transform
inaccurate. It is nontrivial to analyze MM-SMC-ABC to obtain
a theoretical guideline for choosing «, therefore we perform a
computational benchmark to obtain a heuristic. It should be
noted that we use an SMC-ABC sampler with M = 1000 as a
benchmark for accuracy and performance. As a result, it may be
that repeating the analysis with larger M could lead to a smaller
optimal o.

Here, using different values for o we repeatedly solve the
weak Allee model (Section 3.4) and the scratch assay model
(Section 3.5). For both inverse problems we applied MM-SMC-
ABC under identical conditions as in Sections 3.4 and 3.5 with
the exception of the tuning parameter « that takes values from
the sequence {O‘k}2=0 with g = 0.8 and o = a)_;1/2 for
k > 0. For each oy in the sequence, we consider N independent
applications of MM-SMC-ABC. The computational cost for
each oy is denoted by Cost(og) and represents the run time
in seconds for an application of MM-SMC-ABC with tuning
parameter orx. We also calculate an error metric,

Error(ag) = £ (O, Or(ay), P),

where O = {0;}1./:11 is a set of particles from an applica-

tion of SMC-ABC using the expensive stochastic model, and
) T M _i ) ld—apM]

e (A U

and approximate transformed particles from the jth application

of MM-SMC-ABC. For P € N, the function £(-, -, P) is the P-th

order empirical moment-matching distance function (Lillacci

and Khammash 2010; Zechner et al. 2012; Liao, Vejchodsky, and

is the pooled exact

Erban 2015), given by

> L (b —amP\’
EXY.P =), ) o | = acos ’

m=0beS,,

for two sample sets X = {x1,X2,...,Xxm}and Y = {y1,y2, .
YM} with x;,y; € R? forn > 1,and S,, = {b : b € N",||b]]|
= m}. For any n-dimensional discrete vector b = [by,b3,.. .,
b,1" € N, then (X)® is the bth empirical raw moment of the
sample set X,

M
1
AX)" == X,
M i=1

wherex? = xf”l X xlb% XX x?fq. Note that P must be greater than

the number of moments that are matched in the approximate
transform (Equation (11)) to ensure that MM-SMC-ABC is
improving the accuracy in higher moments also.

We estimate the average Cost(ax) and Error(eg) for each
value of «y for both the weak Allee effect and the scratch assay
inverse problems. Figure 7 displays the estimates and standard
errors given P = 6 and N = 10, with the value of oy shown. We
emphasize that P > 2, that is our error measure compares the
first six moments while only two moments are matched. There is
clearly a threshold for o, below which the error becomes highly
variable. For both the weak Allee effect model (Figure 7(A),(C))
and the scratch assay model (Figure 7(B),(D)), the optimal
choice of « is located between o, = 0.2 and oy = 0.05.
Therefore, we suggest a heuristic of o € [0.1,0.2] to be a reliable
choice. If extra performance is needed « € [0.05,0.1) may also
be acceptable, but if accuracy is of the utmost importance then
a ~ 0.2 seems to be the most robust choice. This experiment
also provides insight in to the consistency and stability of the
MM-SMC-ABC method, where @ > 0.1 leads to results that
are consistently fast and have low variability in the error metric.
While further work is required to assess theoretically the stabil-
ity and consistency properties of this method, these numerical
results are promising. In general, the choice of optimal « is still
an open problem and is likely to be impacted by the specific
nature of the relationship between the exact model and the
approximate model.

3.7. Summary

This section presented numerical examples to demonstrate
our new methods, PC-SMC-ABC and MM-SMC-ABC, for
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Figure 7. Error versus cost plots for different values of the tuning parameter «. Averages and standard errors are shown for N = 10 independent applications of the
MM-SMC-ABC method to the (A) weak Allee effect model and (B) the scratch assay model. Results in (A)-(B) are shown in (C)-(D) in a log scale for clarity.

ABC inference with expensive stochastic discrete models. The
tractable Ornstein-Uhlenbeck process was used to highlight
the mechanisms leading to the performance improvements
of PC-ABC-SMC. Then two examples based on lattice-based
random walks were used to demonstrate the efficacy of both
PC-SMC-ABC and MM-SMC-AB. In the weak Allee model
example, data were generated using parameters that violate
standard continuum-limit assumptions; in the scratch assay
model example, the Fisher-KPP continuum limit is known
to be a good approximation in the parameter regime of the
generated data. In both examples, final inferences are biased
when the continuum limit is exclusively relied on in the SMC-
ABC sampler. However, the results from our new algorithms,
PC-SMC-ABC and MM-SMC-ABC, show significantly more
accurate posteriors can be computed at a fraction of the cost
of the full SMC-ABC using the discrete model, with speed
improvements over an order of magnitude.

As mentioned in Section 2.3, the tuning parameter, «, in
the MM-SMC-ABC method effectively determines the tradeoft
between the computational speed of the approximate model
and the accuracy of the expensive stochastic model. The values
a = 0 and o = 1 correspond to performing inference exclu-
sively with, respectively, the continuum limit and the stochastic
discrete model. Based on numerical experimentation, we find
that « ~ 0.1 is quite reasonable, however, this conclusion
will be dependent on the specific model, the parameter space
dimensionality, and the number of particles used for the SMC
scheme.

4. Discussion

In the life sciences, computationally challenging stochastic dis-
crete models are routinely used to characterize the dynamics of
biological populations (Codling, Plank, and Benhamou 2008;
Callaghan et al. 2006; Simpson, Landman, and Hughes 2010).
In practice, approximations such as the mean-field continuum
limit are often derived and used in place of the discrete model for
analysis and, more recently, for inference. However, parameter
inferences will be biased when the approximate model is solely
utilized for inference, even in cases when the approximate model
provides an accurate description of the average behavior of the
stochastic model.

We provide a new approach to inference for stochastic mod-
els that maintains all the methodological benefits of working
with discrete mathematical models, while avoiding the com-
putational bottlenecks of relying solely upon repeated expen-
sive stochastic simulations. Our two new algorithms, PC-SMC-
ABCand MM-SMC-ABC, utilize samples from the approximate
model inference problem in different ways to accelerate SMC-
ABC sampling. The PC-SMC-ABC method is asymptotically
unbiased, and we demonstrate computational improvements of
up to a factor of almost four are possible. While potentially
biased, MM-SMC-ABC can provide further improvements. In
general, the expected speedup is around 1/o, and & & 0.1 is
reasonable based on our numerical investigations. For larger
values of M it may be that even smaller values of o could be
effective.



There are some assumptions in our approach that could
be generalized in future work. First, in PC-SMC-ABC, we
assume that the condition in Equation (8) holds for all €,;
this is reasonable for the models we consider since we never
observe a decrease in performance. However, it may be possible
for the bias in the approximate model to be so extreme
for some €, that the condition in Equation (8) is violated,
leading to a decrease in performance at specific generations.
Acceptance probabilities could be estimated by performing a
small set of trial samples from both n,_;(#,_;) and 7,(6;)
proposal mechanisms, enabling automatic selection of the
optimal proposal mechanism. Second, in the moment matching
transform proposed in Equation (9), we use two moments only
as this is sufficient for the problems we consider here with
numerical examples demonstrating accuracy in the first six
moments. However, our methodology is sufficiently flexible
that additional moments can be incorporated if necessary.
While including higher moments will improve the accuracy
of the moment-matching transform, more samples from the
exact model will be required to achieve initial estimates of these
moments resulting in eroded performance.

While the performance improvements we demonstrate here
are significant, it is also possible to obtain improvements of simi-
lar order through detailed code optimization techniques applied
to standard SMC-ABC. We emphasize that our schemes would
also benefit from such optimizations as advanced vectorization
and parallelization to further improve their performance (Lee
et al. 2010; Warne, Sisson, and Drovandi 2021). Our algorithm
extensions are also more direct to implement over advanced
high performance computing techniques for acceleration of
computational schemes.

There are many extensions to our methods that could be con-
sidered. We have based our presentation on a form of an SMC-
ABC sampler that uses a fixed sequence of thresholds. However,
the ideas of using the preconditioning distribution, as in PC-
SMC-ABC, and the moment matching transform, as in MM-
SMC-ABC, are applicable to SMC schemes that adaptively select
thresholds (Drovandi and Pettitt 2011). Recently, there have
been a number of state-of-the-art inference schemes introduced
based on multilevel Monte Carlo (MLMC) (Giles 2015; Warne,
Baker, and Simpson 2019a). Our new SMC-ABC schemes could
exploit MLMC to combine samples from all acceptance thresh-
olds using a coupling scheme and bias correction telescoping
summation, such as in the work of Jasra et al. (2019) or Warne,
Baker, and Simpson (2018). Early accept/rejection schemes,
such as those considered by Prangle (2016), Prescott and Baker
(2020), and Lester (2020), could also be introduced for the
sampling steps involving the expensive discrete model. Lastly,
the PC-SMC-ABC and the MM-SMC-ABC methods could also
be applied together and possibly lead to a compounding effect
in the performance. Delayed acceptance schemes (Golightly,
Henderson, and Sherlock 2015; Banterle et al. 2019; Bon, Lee,
and Drovandi 2020; Everitt and Rowinska 2020) are also an
alternative approach with similar motivations to the methods we
propose in this work. However, these approaches can be highly
sensitive to false negatives, that is, cases where a particular
value of § would be rejected under the approximate model but
accepted under the exact model . Our PC-SMC-ABC approach
is not affected by false negatives due to the use of the second set
of proposal kernels.
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We have demonstrated our methods using a two-dimensional
lattice-based discrete random-walk model that leads to mean-
field continuum-limit approximations with linear diffusion and
a source term of the form ACf(C). However, our methods
are more widely applicable. We could further generalize the
model to deal with a more general class of reaction-diffusion
continuum limits involving nonlinear diffusion (Warne, Baker,
and Simpson 2019b; Witelski 1995) and generalized pro-
liferation mechanisms (Simpson et al. 2013; Tsoularis and
Wallace 2002). Our framework is also relevant to lattice-
free discrete models (Codling, Plank, and Benhamou 2008;
Browning et al. 2018) and higher dimensional lattice-based
models (Browning, Haridas, and Simpson 2019); we expect the
computational improvements will be even more significant in
this case. Many other forms of model combinations are also
be possible. For example, a sequence of continuum models of
increasing complexity could be considered, as in Browning,
Haridas, and Simpson (2019). Alternatively, a sequence of
numerical approximations of increasing accuracy could be
used for inference using a complex target PDE model (Cotter,
Dashti, and Stuart 2010). Linear mapping approximations of
higher order chemical reaction network models, such as in Cao
and Grima (2018), could also exploit our approach. Another
relevant and very general application in systems biology is the
utilization reaction rate equations or moment closures, that
result in deterministic ODEs, as approximations to stochastic
chemical kinetics models (Higham 2008; Wilkinson 2009; Ruess
and Lygeros 2015; Browning et al. 2020).

Of course, not all approximate models will necessarily
provide performance improvements. As demonstrated for the
Ornstein-Uhlenbeck example (Section 3.1), the stationary
distribution will be more appropriate for inference of o rather
than p with the approximation improving as the model sample
time T increases. However, as shown for lattice-based random
walk models (Sections 3.4 and 3.5), even when the assumptions
associated with the approximation do not hold, it is still possible
to improve sampling with PC-SMC-ABC and MM-ABC-SMC.
Therefore, we suggest that approximations that are derived
from some limiting, averaged behavior of the exact model will
be good initial candidates for our methods. Semi-automated
model reduction techniques also are potential approaches to
obtain approximations (Transtrum and Qiu 2014) that could be
investigated in the future.

In this work, novel methods have been presented for exploit-
ing approximate models to accelerate Bayesian inference for
expensive stochastic models. We have shown that, even when
the approximation leads to biased parameter inferences, it can
still inform the proposal mechanisms for ABC samplers using
the stochastic model. Our numerical examples show perfor-
mance improvements of more than ten-fold. These substantial
computational improvements are promising and expands the
feasibility of Bayesian analysis for problems involving expensive
stochastic models.

Supplementary Material

Appendix: Supplementary sections including extra technical descriptions,
numerical results and datasets. (.pdf file) Software: Snapshot of GitHub
repository including example implementations and examples. (.zip file)
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