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a b s t r a c t

We develop a new analytical solution for a reactive transport model that describes the
steady-state distribution of oxygen subject to diffusive transport and nonlinear uptake in
a sphere. This model was originally reported by Lin [S.H. Lin, Oxygen diffusion in a spheri-
cal cell with nonlinear oxygen uptake kinetics, J. Theor. Biol. 60 (1976) 449–457] to repre-
sent the distribution of oxygen inside a cell and has since been studied extensively by both
the numerical analysis and formal analysis communities. Here we extend these previous
studies by deriving an analytical solution to a generalized reaction–diffusion equation that
encompasses Lin’s model as a particular case. We evaluate the solution for the parameter
combinations presented by Lin and show that the new solutions are identical to a grid-
independent numerical approximation.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction and background

A model of oxygen diffusion and nonlinear uptake in a sphere was originally proposed and solved by Lin [1]. The same
model was then re-examined and re-solved by McElwain [2]. The complete dimensional governing equation can be found
in the original manuscripts of Lin and McElwain [1,2]. Here we present and analyze the corresponding nondimensional gov-
erning equation and boundary conditions which can be written as,

0 ¼ d2C

dR2 þ
2
R

dC
dR
� aC

K þ C
; ð1Þ

subject to

dC
dR
¼ 0 at R ¼ 0 ð2Þ

and

dC
dR
¼ Hð1� CÞ at R ¼ 1: ð3Þ

The governing equation is a steady-state reaction–diffusion equation representing oxygen transport by linear diffusion in a
sphere with spherical symmetry. The oxygen uptake is described by the nonlinear Michaelis–Menten model [3] with a max-
imum reaction rate a and the half-saturation concentration K. The boundary condition at R = 0 ensures that the oxygen dis-
tribution is symmetric at the center of the sphere, and the boundary condition at R = 1 specifies a flux of oxygen at the cell
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membrane. This flux is proportional to the difference in oxygen concentration across the cell membrane. The proportionality
coefficient, H, represents the membrane permeability [1,2].

The solution of this boundary value problem has been studied extensively, beginning with the work of Lin [1] who pre-
sented numerical solutions of the governing equation. This first study was re-examined by McElwain [2] who presented new
numerical solutions of the governing equation and showed that Lin’s [1] previous results were in error. Since this initial con-
troversy, this problem has been studied by many researchers from two different points of view. Firstly, approximate solu-
tions of the governing equation have been studied using a variety of techniques including shooting methods [4], spline
approximations [5,6], high-order finite difference methods [7] and regular perturbation methods [2]. Secondly, this problem
has also been analyzed formally leading to expressions for upper and lower bounds of the solution [8] as well as proving the
uniqueness and existence of the solution [9]. We will build on these previous studies and, for the first time, derive an ana-
lytical solution of the model. Our approach [10] is related to the decomposition method [11] and the homotopy analysis
method [12–14] since our solution takes the form of a convergent series.

Our solution approach is very flexible and we will demonstrate this by studying a generalization of Eqs. (1)–(3) which we
write as

0 ¼ d2C

dR2 þ
a
R

dC
dR
� f ðCÞ; ð4Þ

subject to

dC
dR
¼ 0 at R ¼ 0 ð5Þ

and

dC
dR
¼ Hð1� CÞ at R ¼ 1: ð6Þ

Comparing Eqs. (1)–(3) and Eqs. (4)–(6), we see that two generalizations have been made:

(1) Eq. (4) is written in terms of a constant a which can be chosen to reflect Cartesian (a = 0), cylindrical (a = 1) or spherical
(a = 2) geometry;

(2) Eq. (4) is relevant for any uptake model f(C).

By setting a = 2 and f(C) = aC/(C + K), we recover the original nondimensional model considered by Lin [1] and McElwain
[2]. Our aim is now to solve the general problem.

2. General solution

Our strategy is to find the solution of Eqs. (4)–(6) and we begin by assuming that the solution can be written in terms of a
series expansion. We note that other researchers are also using series solutions to find analytical solutions to mathematical
models that are used to represent various biological and biochemical processes. For example, our previous research has
shown that certain steady-state reactive transport problems that arise in the chemical engineering literature can be solved
by using series expansions [10]. In this previous work we showed that certain known closed-form solutions correspond to
Taylor series solutions when the closed form solution is expanded in a series. Furthermore, we showed that some reactive-
transport processes do not appear to have a closed-form solution, however we were able to express and evaluate the solution
in a series without any difficulty. Other applications of series solutions include studying susceptible-recovered-infected
models of epidemic dynamics [15,16] as well as finding the solution of differential equation models that arise in age-struc-
tured models [17].

We assume that the solution of Eqs. (4)–(6) is sufficiently smooth so that it can be expanded in a Maclaurin series given
by

CðRÞ ¼
X1
i¼0

Ri

i!
diC

dRi

�����
R¼0

¼ Cð0Þ þ R
dC
dR

����
R¼0
þ R2

2!

d2C

dR2

�����
R¼0

þ R3

3!

d3C

dR3

�����
R¼0

þ � � � ð7Þ

To determine the values of the derivatives at R = 0 we rewrite Eq. (4) as

d2C

dR2 ¼ �
a
R

dC
dR
þ f ðCÞ: ð8Þ

Assuming that f(C) is sufficiently differentiable, we evaluate derivatives of C(R) by recursively differentiating Eq. (8) to give,
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d2C

dR2 ¼ �
a
R

dC
dR
þ f ðCÞ;

d3C

dR3 ¼
a

R2

dC
dR
� a

R
d2C

dR2 þ
df ðCÞ

dC
dC
dR

;

d4C

dR4 ¼ �
2a

R3

dC
dR
þ 2a

R2

d2C

dR2 �
a
R

d3C

dR3 þ
d2f ðCÞ

dC2

dC
dR

� �2

þ df ðCÞ
dC

d2C

dR2 ;

..

.

ð9Þ

We now evaluate the derivative expressions in Eq. (9) at the origin by substituting R = 0 into Eq. (9) and impose the boundary
condition that dC

dR ¼ 0 at R = 0. By imposing these two conditions simultaneously, we see that many terms in Eq. (9) must be
evaluated using L’Hopital’s rule [18] in the limit that R ? 0+, which gives:

dC
dR

����
R¼0
¼ 0;

d2C

dR2

�����
R¼0

¼ f ðC0Þ
1þ a

;

d3C

dR3

�����
R¼0

¼ 0;

d4C

dR4

�����
R¼0

¼
d2C
dR2

���
R¼0

df
dC

���
C¼C0

1þ a
3

;

d5C

dR5

�����
R¼0

¼ 0;

d6C

dR6

�����
R¼0

¼
3d2C

dR2

���
R¼0

d2f
dC2

���
C¼C0

þ d4C
dR4

���
R¼0

df
dC

���
C¼C0

1þ a
5

;

..

.

ð10Þ

where C0 = C(0). These derivative terms evaluated at R = 0 allow us to express the Maclaurin series solution (Eq. (7)) as

CðRÞ ¼ C0 þ
R2

2!

f ðC0Þ
1þ a

� �
þ R4

4!

d2C
dR2

���
R¼0

df
dC

���
C¼C0

1þ a
3

2
64

3
75þ R6

6!

3d2C
dR2

���
R¼0

d2 f
dC2

���
C¼C0

þ d4C
dR4

���
R¼0

df
dC

���
C¼C0

1þ a
5

2
64

3
75þOðR8Þ ð11Þ

2.1. Convergence and limitations

The ith term in the Maclaurin series is

Ri

i!
@ i�2

@Ri�2 �
a
R

dC
dR
þ f ðCÞ

� �! �����
R¼0

; i P 2: ð12Þ

The derivative expressions in Eq. (12) can be evaluated at R = 0 by applying L’Hopital’s rule as we previously demonstrated.
The resulting derivative expressions are combinations of derivatives of the functions C(R) and f(C) evaluated at R = 0 and
C = C(0), respectively. Since we have assumed that C(R) and f(C) are everywhere sufficiently differentiable, applying the ratio
test to this series shows that the radius of convergence is infinite [18]. This means that the series will converge for all values
of R and this will be true for all standard forms of the uptake function f(C) (e.g. polynomial functions and certain rational

Table 1
Four different sets of parameters, used by Lin [1] and McElwain [2], are given to define solutions labeled (b), (c), (d) and (e). The value of C0 obtained from the
series solutions truncated after the R6 term and the corresponding value of C0 obtained from the fine-mesh numerical simulations are given.

Solution a K H C0 (Numerical) C0 (Series)

(b) 0.38065 0.03119 5.0 0.91404 0.91404
(c) 0.38065 0.03119 0.5 0.69583 0.69583
(d) 0.76129 0.03119 5.0 0.82848 0.82848
(e) 0.38065 0.31187 5.0 0.93311 0.93311
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functions such as the Michaelis–Menten model). Therefore the Maclaurin series is an exact solution that always converges
for all practical choices of f(C), furthermore we can implement the series solution by truncating the series after a finite num-
ber of terms [10,19]. The question of how to determine the level of truncation will be addressed in Section 2.2.

2.2. Boundary condition at R = 1

To implement the series solution for a particular problem we must determine C0 by applying the remaining boundary
condition at R = 1, given by dC

dR ¼ Hð1� CÞ. To satisfy this condition, we differentiate the general series with respect to R to
obtain dC

dR. After truncating the series expressions for C(R) and dC
dR, we substitute these truncated series into the boundary con-

dition at R = 1 to obtain an algebraic relationship that determines the value of C0. This algebraic relationship can be solved to
find C0 using any standard root finding technique (e.g. the bisection algorithm, or a standard in-built routine such fsolve in
Maple). This process gives an approximate value of C0. However, since the series solution is convergent we can arbitrarily
increase the accuracy of this approximation by simply retaining more terms in the truncated series and examine the conver-
gence behavior of C0 as further terms are retained in the series. Examining the convergence behavior of C0 as more terms are
retained in the truncated series is particularly straightforward provided that the solution is implemented using a symbolic
software platform.

3. Case study: spherical geometry and Michaelis–Menten uptake

By substituting a = 2 and f(C) = aC/(K + C), we obtain the solution corresponding to the previous work of Lin [1] and McEl-
wain [2]. This solution, truncated after the R6 term, can be written as

CðRÞ ¼ C0 þ
aC0R2

3!ðC0 þ KÞ þ
a2C0KR4

5!ðC0 þ KÞ3
� a3C0Kð10C0 � 3KÞR6

7!½3ðC0 þ KÞ5�
þ OðR8Þ: ð13Þ

Although we have truncated the solution after the R6 term, it is straightforward to extend this solution to include any higher
order terms if necessary. To apply the boundary condition at R = 1, we differentiate Eq. (13) with respect to R to obtain an
expression for dC

dR. To find C0 we substitute these truncated series into the boundary condition dC
dR ¼ Hð1� CÞ at R = 1 and solve

the resulting algebraic expression for C0 using the fsolve command in Maple. We now apply the solution to study four dif-
ferent parameter combinations given by Lin [1] and McElwain [2]. The parameter combinations are summarized in Table 1
and the corresponding solution profiles are given in Fig. 1.

To demonstrate the accuracy of the Maclaurin series solution, we generated numerical solutions of Eqs. (4)–(6) and
compare these with the Maclaurin series solutions in Fig. 1. To generate the numerical solutions, spatial derivatives in
Eqs. (4)–(6) were replaced with a standard centered in space finite difference approximation on a uniform grid with spacing
dx [20–22]. This gives a tridiagonal system of nonlinear algebraic equations. The nonlinear algebraic system was linearized
using Picard iteration [23], and the resulting systems of linear equations were solved using the Thomas algorithm [20]. Iter-
ations were performed until the maximum change in the value of the dependent variable between iterations fell below a
small tolerance, �1. For all results presented here we used a fine grid and a strict convergence tolerance by setting dx = 1
� 10�5 and �1 = 1 � 10�8. The values of C0 obtained from the truncated series solution and the fine-mesh numerical solutions
are given in Table 1 and show that the analytical solution agrees with the numerical solution correct to five decimal places.
Furthermore, the numerical profiles are superimposed on the series solutions in Fig. 1 showing that, in all cases considered,
the series solutions and the numerical solutions are visually indistinguishable at this scale.

R 10
0.5

1

C

(b)

(c)

(d)

(e)

Fig. 1. Comparison of the Maclaurin series solutions (solid red) and the fine-mesh numerical solutions (dotted green) of Eqs. (1)–(3). Four different
solutions labeled (b), (c), (d) and (e) are presented with the corresponding parameter values in Table 1. These parameter values corresponded to various
experimentally-motivated conditions described in Lin [1] and McElwain [2]. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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We also generated equivalent numerical results using a finer grid and an even stricter convergence tolerance which, for
all problems considered in this work, gave results that were visually indistinguishable from the numerical results on the ori-
ginal fine grid. This grid refinement procedure ensured that our numerical results are grid independent.

4. Conclusion

We have derived an analytical solution of a general reaction–diffusion model in an arbitrary geometry (Cartesian, cylin-
drical or spherical) with an arbitrary (linear or nonlinear) uptake term. This general solution can be used to represent a num-
ber of biological processes including the transport and uptake of oxygen in a spherical cell. This particular problem has
received a great deal of interest both from the analysis and numerical communities however we believe that this is the first
time that a general solution has been presented.

Our solution is a Maclaurin series, and we obtain expressions for the general term in the Maclaurin series to show that the
series is convergent. Numerical simulations of the previous problems considered by Lin [1] and McElwain [2] are reproduced
and we show that the series solution is identical to fine-mesh numerical solutions.

The Maclaurin series solution presented here could be further generalized and applied to other spherical reactive-
transport problems from the mathematical biology literature. A classical application of spherical reactive-transport mod-
els is to consider the growth of a solid tumor [24]. Solid tumor growth models can replicate key experimental observa-
tions which include the formation of an oxygen-depleted necrotic core, a quiescent zone and an oxygen-rich proliferation
zone [24,25]. These solid tumor growth models are an extension of the type of model considered in this work since they
are an example of a multi-species reactive-transport model [25,21,22] involving two (or more) reactive-transport equa-
tions for each relevant component and these equations are coupled. For the solid tumor growth models the relevant
components are usually the concentration of tumor cells and the concentration of certain growth factors or nutrients
such as oxygen and glucose [25]. As far as we are aware the Maclaurin series solution technique has not yet been
applied to these kinds of multi-species reactive transport problems and this remains an open question to be explored
in the future.
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